Global Well-posedness for the Fourth-order Defocusing Cubic Equation with Initial Data Lying in a Critical Sobolev Space

被引:0
|
作者
Chen, Miao [1 ]
Wang, Hua [1 ]
Yao, Xiaohua [1 ,2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Key Lab Nonlinear Anal & Applicat, Minist Educ, Wuhan 430079, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2024年
基金
中国国家自然科学基金;
关键词
Global well-posedness; fourth-order cubic equation; critical Sobolev space; NONLINEAR SCHRODINGER-EQUATIONS; SCATTERING; STABILITY;
D O I
10.1007/s11464-023-0135-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to study the Cauchy problem of the fourth-order defocusing, cubic equation iut + Delta 2u = - divided by u divided by 2u in critical Sobolev space. We first prove that the problem is local well-posed in the critical Sobolev space H(center dot)sc(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}<^>{s_{c}}(\mathbb{R}<^>{N})$$\end{document}, 3 <= N <= 7. Using the argument of Dodson in [Rev. Mat. Iberoam., 2022, 38(4): 1087-1100], we further prove that the problem is globally well-posed in some critical Sobolev space Hps(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{p}<^>{s}(\mathbb{R}<^>{N})$$\end{document} for N = 6 and N = 7 with radial initial data.
引用
收藏
页码:547 / 580
页数:34
相关论文
共 50 条