Self Supervised Denoising Diffusion Probabilistic Models for Abdominal DW-MRI

被引:0
作者
Vasylechko, Serge [1 ]
Afacan, Onur [1 ]
Kurugol, Sila [1 ]
机构
[1] Harvard Med Sch, Boston Childrens Hosp, Dept Radiol, QUIN Lab, Boston, MA 02115 USA
来源
COMPUTATIONAL DIFFUSION MRI, CDMRI 2023 | 2023年 / 14328卷
基金
美国国家卫生研究院;
关键词
denoising; diffusion probabilistic models; quantitative mapping; abdominal MRI; ALGORITHM;
D O I
10.1007/978-3-031-47292-3_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative diffusion weighted MRI in the abdomen provides important markers of disease, however significant limitations exist for its accurate computation. One such limitation is the low signal-to-noise ratio, particularly at high diffusion b-values. To address this, multiple diffusion directional images can be collected at each b-value and geometrically averaged, which invariably leads to longer scan time, blurring due to motion and other artifacts. We propose a novel parameter estimation technique based on self supervised diffusion denoising probabilistic model that can effectively denoise diffusion weighted images and work on single diffusion gradient direction images. Our source code is made available at https://github.com/quin-med-harvard-edu/ssDDPM
引用
收藏
页码:80 / 91
页数:12
相关论文
共 19 条
[1]  
Afaq A, 2010, Cancer Imaging, V10 Spec no A, pS179, DOI 10.1102/1470-7330.2010.9032
[2]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[3]   NLM based magnetic resonance image denoising - A review [J].
Bhujle, Hemalata V. ;
Vadavadagi, Basavaraj H. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 47 :252-261
[4]   Can diffusion-weighted imaging distinguish between benign and malignant pediatric liver tumors? [J].
Caro-Dominguez, Pablo ;
Gupta, Abha A. ;
Chavhan, Govind B. .
PEDIATRIC RADIOLOGY, 2018, 48 (01) :85-93
[5]   Denoising diffusion weighted imaging data using convolutional neural networks [J].
Cheng, Hu ;
Vinci-Booher, Sophia ;
Wang, Jian ;
Caron, Bradley ;
Wen, Qiuting ;
Newman, Sharlene ;
Pestilli, Franco .
PLOS ONE, 2022, 17 (09)
[6]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[7]  
Fadnavis S, 2020, ADV NEUR IN, V33
[8]   Low-Rank Modeling of Local k-Space Neighborhoods (LORAKS) for Constrained MRI [J].
Haldar, Justin P. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (03) :668-681
[9]  
Ho J., 2020, P NIPS, V33, P6840
[10]   Supervised denoising of diffusion-weighted magnetic resonance images using a convolutional neural network and transfer learning [J].
Jurek, Jakub ;
Materka, Andrzej ;
Ludwisiak, Kamil ;
Majos, Agata ;
Gorczewski, Kamil ;
Cepuch, Kamil ;
Zawadzka, Agata .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2023, 43 (01) :206-232