Influence of Hardwood Lignin Blending on the Electrical and Mechanical Properties of Cellulose Based Carbon Fibers

被引:5
作者
Arasi, Azega Rajendra Babu Kalai [1 ,2 ]
Bengtsson, Jenny [4 ]
Haque, Mazharul [1 ]
Theliander, Hans [2 ,3 ]
Enoksson, Peter [5 ]
Lundgren, Per [1 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[2] Wallenberg Wood Sci Ctr, Stockholm 10044, Sweden
[3] Chalmers Univ Technol, Dept Chem & Chem Engn, SE-41296 Gothenburg, Sweden
[4] RISE Res Inst Sweden, Molndal 43153, Sweden
[5] Enoaviatech AB, S-11226 Stockholm, Sweden
基金
欧洲研究理事会;
关键词
Carbon fibers; Lignin-cellulosefibers; Electrical conductivity; Mechanical strength; AMORPHOUS-CARBON; PRECURSORS; XPS; MICROSTRUCTURE; STABILIZATION; SPECTROSCOPY; FABRICATION; DIAMOND;
D O I
10.1021/acssuschemeng.4c02052
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon fibers (CFs) are fabricated by blending hardwood kraft lignin (HKL) and cellulose. Various compositions of HKL and cellulose in blended solutions are air-gap spun in 1-ethyl-3-methylimidazolium acetate (EMIM OAc), resulting in the production of virtually bead-free quality fibers. The synthesized HKL-cellulose fibers are thermostabilized and carbonized to achieve CFs, and consequently their electrical and mechanical properties are evaluated. Remarkably, fibers with the highest lignin content (65%) exhibited an electrical conductivity of approximately 42 S/cm, surpassing that of cellulose (approximately 15 S/cm). Moreover, the same fibers demonstrated significantly improved tensile strength (similar to 312 MPa), showcasing a 5-fold increase compared to pure cellulose while maintaining lower stiffness. Comprehensive analyses, including Auger electron spectroscopy and wide-angle X-ray scattering, show a heterogeneous skin-core morphology in the fibers revealing a higher degree of preferred orientation of carbon components in the skin compared to the core. The incorporation of lignin in CFs leads to increased graphitization, enhanced tensile strength, and a unique skin-core structure, where the skin's graphitized cellulose and lignin contribute stiffness, while the predominantly lignin-rich core enhances carbon content, electrical conductivity, and strength.
引用
收藏
页码:11206 / 11217
页数:12
相关论文
共 53 条
[1]   Carbon Fibers from Lignin-Cellulose Precursors: Effect of Carbonization Conditions [J].
Bengtsson, Andreas ;
Hecht, Pascale ;
Sommertune, Jens ;
Ek, Monica ;
Sedin, Maria ;
Sjoholm, Elisabeth .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (17) :6826-6833
[2]   Carbon Fibers from Lignin-Cellulose Precursors: Effect of Stabilization Conditions [J].
Bengtsson, Andreas ;
Bengtsson, Jenny ;
Sedin, Maria ;
Sjoholm, Elisabeth .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (09) :8440-8448
[3]   Improved yield of carbon fibres from cellulose and kraft lignin [J].
Bengtsson, Andreas ;
Bengtsson, Jenny ;
Olsson, Carina ;
Sedin, Maria ;
Jedvert, Kerstin ;
Theliander, Hans ;
Sjoholm, Elisabeth .
HOLZFORSCHUNG, 2018, 72 (12) :1007-1016
[4]   Preventing fiber-fiber adhesion of lignin-cellulose precursors and carbon fibers with spin finish application [J].
Bengtsson, Jenny ;
Bengtsson, Andreas ;
Ulmefors, Hanna ;
Sedin, Maria ;
Jedvert, Kerstin .
HOLZFORSCHUNG, 2023, 77 (08) :648-656
[5]   The challenge of predicting spinnability: Investigating benefits of adding lignin to cellulose solutions in air-gap spinning [J].
Bengtsson, Jenny ;
Jedvert, Kerstin ;
Kohnke, Tobias ;
Theliander, Hans .
JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (26)
[6]   Mass transport and yield during spinning of lignin-cellulose carbon fiber precursors [J].
Bengtsson, Jenny ;
Jedvert, Kerstin ;
Hedlund, Artur ;
Kohnke, Tobias ;
Theliander, Hans .
HOLZFORSCHUNG, 2019, 73 (05) :509-516
[7]   Lignin-based carbon fibers: Oxidative thermostabilization of kraft lignin [J].
Braun, JL ;
Holtman, KM ;
Kadla, JF .
CARBON, 2005, 43 (02) :385-394
[8]   Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production [J].
Byrne, Nolene ;
De Silva, Rasike ;
Ma, Yibo ;
Sixta, Herbert ;
Hummel, Michael .
CELLULOSE, 2018, 25 (01) :723-733
[9]  
Childs K.D., 1995, HDB AUGER ELECTRONSP
[10]  
Childs K. D., 1995, Handbook of AugerElectron Spectroscopy: A Book of Reference Data for Identificationand Interpretation in Auger Electron Spectroscopy, V3