SSVEP-DAN: Cross-Domain Data Alignment for SSVEP-Based Brain-Computer Interfaces

被引:1
作者
Chen, Sung-Yu [1 ]
Chang, Chi-Min [1 ]
Chiang, Kuan-Jung [2 ]
Wei, Chun-Shu [3 ,4 ]
机构
[1] Natl Yang Ming Chiao Tung Univ NYCU, Dept Comp Sci, Hsinchu 30010, Taiwan
[2] Arctop Inc, La Jolla, CA 92093 USA
[3] Natl Yang Ming Chiao Tung Univ NYCU, Inst Educ, Dept Comp Sci, Hsinchu 30010, Taiwan
[4] Natl Yang Ming Chiao Tung Univ NYCU, Inst Biomed Engn, Hsinchu 30010, Taiwan
关键词
Electroencephalogram (EEG); brain-computer interface (BCI); steady-state visual-evoked potentials (SSVEPs); domain adaptation; data alignment; BCI;
D O I
10.1109/TNSRE.2024.3404432
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through highspeed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To address the challenge of data insufficiency in SSVEP-based BCIs, we introduce SSVEP-DAN, the first dedicated neural network model designed to align SSVEP data across different domains, encompassing various sessions, subjects, or devices. Our experimental results demonstrate the ability of SSVEP-DAN to transform existing source SSVEP data into supplementary calibration data. This results in a significant improvement in SSVEP decoding accuracy while reducing the calibration time. We envision SSVEP-DAN playing a crucial role in future applications of high-performance SSVEP-based BCIs. The source code for this work is available at: https://github.com/CECNL/SSVEP-DAN.
引用
收藏
页码:2027 / 2037
页数:11
相关论文
共 55 条
[1]   Simulating Brain Signals: Creating Synthetic EEG Data via Neural-Based Generative Models for Improved SSVEP Classification [J].
Aznan, Nik Khadijah Nik ;
Atapour-Abarghouei, Amir ;
Bonner, Stephen ;
Connolly, Jason D. ;
Al Moubayed, Noura ;
Breckon, Toby P. .
2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
[2]   A hybrid P300-SSVEP brain-computer interface speller with a frequency enhanced row and column paradigm [J].
Bai, Xin ;
Li, Minglun ;
Qi, Shouliang ;
Ng, Anna Ching Mei ;
Ng, Tit ;
Qian, Wei .
FRONTIERS IN NEUROSCIENCE, 2023, 17
[3]   FBDNN: filter banks and deep neural networks for portable and fast brain-computer interfaces [J].
Bassi, Pedro R. A. S. ;
Attux, Romis .
BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2022, 8 (03)
[4]   An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method [J].
Bin, Guangyu ;
Gao, Xiaorong ;
Yan, Zheng ;
Hong, Bo ;
Gao, Shangkai .
JOURNAL OF NEURAL ENGINEERING, 2009, 6 (04)
[5]   Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control [J].
Birbaumer, Niels .
PSYCHOPHYSIOLOGY, 2006, 43 (06) :517-532
[6]   Tangent space alignment: Transfer learning for Brain-Computer Interface [J].
Bleuze, Alexandre ;
Mattout, Jeremie ;
Congedo, Marco .
FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
[7]   Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces [J].
Cao, Teng ;
Wan, Feng ;
Wong, Chi Man ;
da Cruz, Janir Nuno ;
Hu, Yong .
BIOMEDICAL ENGINEERING ONLINE, 2014, 13
[8]   A Single-Channel SSVEP-Based BCI with a Fuzzy Feature Threshold Algorithm in a Maze Game [J].
Chen, Shih-Chung ;
Chen, Yeou-Jiunn ;
Zaeni, Ilham A. E. ;
Wu, Chung-Min .
INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2017, 19 (02) :553-565
[9]   High-speed spelling with a noninvasive brain-computer interface [J].
Chen, Xiaogang ;
Wang, Yijun ;
Nakanishi, Masaki ;
Gao, Xiaorong ;
Jung, Tzyy-Ping ;
Gao, Shangkai .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (44) :E6058-E6067
[10]   Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface [J].
Chen, Xiaogang ;
Wang, Yijun ;
Gao, Shangkai ;
Jung, Tzyy-Ping ;
Gao, Xiaorong .
JOURNAL OF NEURAL ENGINEERING, 2015, 12 (04)