Equidistribution and independence of Gauss sums

被引:0
作者
Rojas-Leon, Antonio [1 ]
机构
[1] Fac Matemat, Dept Algebra, C Tarfia S-N, Seville 41012, Spain
关键词
Gauss sums; Equidistribution;
D O I
10.1016/j.aim.2024.109762
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a general independent equidistribution result for Gauss sums associated to n monomials in r variable multiplicative characters over a finite field, which generalizes several previous equidistribution results for Gauss and Jacobi sums. As an application, we show that any relation satisfied by these Gauss sums must be a combination of the conjugation relation G ( chi ) G ( chi ) = +/- q , Galois conjugation invariance and the Hasse -Davenport product formula. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:20
相关论文
共 14 条
[1]  
[Anonymous], 1977, Lecture Notes in Math, V569, P168
[2]  
[Anonymous], 1990, Annals of Mathematics Studies
[3]  
BEILINSON A. A., 2018, ASTERISQUE, V100
[4]  
BERNDT BC, 1998, GAUSS JACOBI SUMS
[5]  
Forey A, 2024, Arxiv, DOI arXiv:2109.11961
[6]   Perverse l-adic bundles on a torus [J].
Gabber, O ;
Loeser, F .
DUKE MATHEMATICAL JOURNAL, 1996, 83 (03) :501-606
[7]  
Katz N.M., 1980, ASTERISQUE, V79
[8]  
Katz Nicholas M., 1988, Annals of Math. Studies, V116, DOI 10.1515/9781400882120
[9]  
Katz NM, 2012, ANN MATH STUD, V180, P1
[10]  
Katz NM, 1996, PROG MATH, V139, P537