The Use of the Mannich Reaction toward Amino-Based Anthraquinone Applied in Aqueous Redox Flow Battery

被引:0
作者
Almeida, Renata G. [1 ]
De Silva, Oshadie [2 ]
Delolo, Fabio G. [1 ]
Araujo, Maria H. [1 ]
Maniam, Subashani [2 ]
da Silva Junior, Eufranio N. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Quim, Inst Ciencias Exatas, BR-31270901 Belo Horizonte, MG, Brazil
[2] RMIT Univ, STEM Coll, Sch Sci, Appl Chem & Environm Sci, Melbourne, Vic 3001, Australia
来源
ADVANCED ENERGY AND SUSTAINABILITY RESEARCH | 2024年 / 5卷 / 10期
关键词
alizarin; anthraquinone; energy storages; Mannich reactions; redox flow batteries; PH; CAPACITY; ELECTROLYTES; QUINONES; LIFETIME;
D O I
10.1002/aesr.202400118
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A water-soluble anthraquinone derived from alizarin, 3HAAQ, is introduced as the redox-active material in a negative potential electrolyte (anolyte) for aqueous redox flow batteries operating at pH 14. The synthesis of 3HAAQ is carried out using the Mannich reaction, which significantly improves the solubility of the new compound, an important factor for its use in RFB. Pairing with potassium ferri/ferrocyanide positive electrolyte, this flow battery exhibits an open-circuit voltage of 1.24 V and maintains nearly 80% of the theoretical capacity at 40 mA cm-2 current density. A water-soluble anthraquinone derived from alizarin, 3HAAQ, is introduced as the redox-active material in a negative potential electrolyte (anolyte) for aqueous redox flow batteries operating at pH 14image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:8
相关论文
共 56 条
  • [1] An Extremely Stable and Soluble NH2-Substituted Anthraquinone Electrolyte for Aqueous Redox Flow Batteries
    Alfaraidi, Abdulrahman M.
    Xi, Dawei
    Ni, Nina
    George, Thomas Y.
    Tsukamoto, Tatsuhiro
    Gordon, Roy G.
    Aziz, Michael J.
    Liu, Richard Y.
    [J]. ACS APPLIED ENERGY MATERIALS, 2023, 6 (24) : 12259 - 12266
  • [2] Multicomponent Mannich reactions: General aspects, methodologies and applications
    Allochio Filho, Joao F.
    Lemos, Barbara C.
    de Souza, Acacio S.
    Pinheiro, Sergio
    Greco, Sandro J.
    [J]. TETRAHEDRON, 2017, 73 (50) : 6977 - 7004
  • [3] An Extremely Stable, Highly Soluble Monosubstituted Anthraquinone for Aqueous Redox Flow Batteries
    Amini, Kiana
    Kerr, Emily F.
    George, Thomas Y.
    Alfaraidi, Abdulrahman M.
    Jing, Yan
    Tsukamoto, Tatsuhiro
    Gordon, Roy G.
    Aziz, Michael J.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (13)
  • [4] Redox flow batteries: a new frontier on energy storage
    Arevalo-Cid, P.
    Dias, P.
    Mendes, A.
    Azevedo, J.
    [J]. SUSTAINABLE ENERGY & FUELS, 2021, 5 (21): : 5366 - 5419
  • [5] A Neutral pH Aqueous Organic-Organometallic Redox Flow Battery with Extremely High Capacity Retention
    Beh, Eugene S.
    De Porcellinis, Diana
    Gracia, Rebecca L.
    Xia, Kay T.
    Gordon, Roy G.
    Aziz, Michael J.
    [J]. ACS ENERGY LETTERS, 2017, 2 (03): : 639 - 644
  • [6] Molecular redox species for next-generation batteries
    Cameron, Jamie M.
    Holc, Conrad
    Kibler, Alexander J.
    Peake, Catherine L.
    Walsh, Darren A.
    Newton, Graham N.
    Johnson, Lee R.
    [J]. CHEMICAL SOCIETY REVIEWS, 2021, 50 (10) : 5863 - 5883
  • [7] Organic Flow Batteries: Recent Progress and Perspectives
    Cao, Jianyu
    Tian, Junya
    Xu, Juan
    Wang, Yonggang
    [J]. ENERGY & FUELS, 2020, 34 (11) : 13384 - 13411
  • [8] Benchmarking organic active materials for aqueous redox flow batteries in terms of lifetime and cost
    Emmel, Dominik
    Kunz, Simon
    Blume, Nick
    Kwon, Yongchai
    Turek, Thomas
    Minke, Christine
    Schroeder, Daniel
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [9] Organic quinones towards advanced electrochemical energy storage: recent advances and challenges
    Han, Cuiping
    Li, Hongfei
    Shi, Ruiying
    Zhang, Tengfei
    Tong, Jing
    Li, Junqin
    Li, Baohua
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (41) : 23378 - 23415
  • [10] Which Parameter is Governing for Aqueous Redox Flow Batteries with Organic Active Material?
    Hofmann, Jonas D.
    Schroeder, Daniel
    [J]. CHEMIE INGENIEUR TECHNIK, 2019, 91 (06) : 786 - 794