Robust inverse parameter fitting of thermal properties from the laser-based Ångstrom method in the presence of measurement noise using physics-informed neural networks (PINNs)

被引:2
作者
Sripada, Shanmukhi [1 ,2 ]
Gaitonde, Aalok U. [1 ,2 ]
Weibel, Justin A. [1 ,2 ]
Marconnet, Amy M. [1 ,2 ]
机构
[1] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
DIFFUSIVITY;
D O I
10.1063/5.0206247
中图分类号
O59 [应用物理学];
学科分类号
摘要
The two-dimensional laser-based & Aring;ngstrom method measures the in-plane thermal properties for anisotropic film-like materials. It involves periodic laser heating at the center of a suspended film sample and records its transient thermal response by infrared imaging. These spatiotemporal temperature data must be analyzed to extract the unknown thermal conductivity values in the orthotropic directions, an inverse parameter fitting problem. Previous demonstration of the metrology technique used a least-squares fitting method that relies on numerical differentiation to evaluate the second-order partial derivatives in the differential equation describing transient conduction in the physical system. This fitting approach is susceptible to measurement noise, introducing high uncertainty in the extracted properties when working with noisy data. For example, when noise of a signal-to-noise ratio of 10 is added to simulated amplitude and phase data, the error in the extracted thermal conductivity can exceed 80%. In this work, we introduce a new alternative inverse parameter fitting approach using physics-informed neural networks (PINNs) to increase the robustness of the measurement technique for noisy temperature data. We demonstrate the effectiveness of this approach even for scenarios with extreme levels of noise in the data. Specifically, the PINN-approach accurately extracts the properties to within 5% of the true values even for high noise levels (a signal-to-noise ratio of 1). This offers a promising avenue for improving the robustness and accuracy of advanced thermal metrology tools that rely on inverse parameter fitting of temperature data to extract thermal properties.
引用
收藏
页数:11
相关论文
共 16 条
  • [1] [Anonymous], 1863, LONDON EDINBURGH DUB, DOI DOI 10.1080/14786446308643429
  • [2] Physics-Informed Neural Networks for Heat Transfer Problems
    Cai, Shengze
    Wang, Zhicheng
    Wang, Sifan
    Perdikaris, Paris
    Karniadakis, George E. M.
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (06):
  • [3] Long-range interactions of kinks
    Christov, Ivan C.
    Decker, Robert J.
    Demirkaya, A.
    Gani, Vakhid A.
    Kevrekidis, P. G.
    Radomskiy, R., V
    [J]. PHYSICAL REVIEW D, 2019, 99 (01)
  • [4] Graphene related materials for thermal management
    Fu, Yifeng
    Hansson, Josef
    Liu, Ya
    Chen, Shujing
    Zehri, Abdelhafid
    Samani, Majid Kabiri
    Wang, Nan
    Ni, Yuxiang
    Zhang, Yan
    Zhang, Zhi-Bin
    Wang, Qianlong
    Li, Mengxiong
    Lu, Hongbin
    Sledzinska, Marianna
    Sotomayor Torres, Clivia M.
    Volz, Sebastian
    Balandin, Alexander A.
    Xu, Xiangfan
    Liu, Johan
    [J]. 2D MATERIALS, 2020, 7 (01)
  • [5] A laser-based Ångstrom method for in-plane thermal characterization of isotropic and anisotropic materials using infrared imaging
    Gaitonde, Aalok U.
    Candadai, Aaditya A.
    Weibel, Justin A.
    Marconnet, Amy M.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (07)
  • [6] Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits
    Ghosh, S.
    Calizo, I.
    Teweldebrhan, D.
    Pokatilov, E. P.
    Nika, D. L.
    Balandin, A. A.
    Bao, W.
    Miao, F.
    Lau, C. N.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (15)
  • [7] Inda AJG, 2022, 2022 3RD URSI ATLANTIC AND ASIA PACIFIC RADIO SCIENCE MEETING (AT-AP-RASC)
  • [8] DeepXDE: A Deep Learning Library for Solving Differential Equations
    Lu, Lu
    Meng, Xuhui
    Mao, Zhiping
    Karniadakis, George Em
    [J]. SIAM REVIEW, 2021, 63 (01) : 208 - 228
  • [9] THERMAL DIFFUSIVITY AND THERMAL-CONDUCTIVITY OF PYROLYTIC-GRAPHITE FROM 300 DEGREES K TO 2700 DEGREES K
    NULL, MR
    LOZIER, WW
    MOORE, AW
    [J]. CARBON, 1973, 11 (02) : 81 - 87
  • [10] Solving Inverse Heat Transfer Problems Without Surrogate Models: A Fast, Data-Sparse, Physics Informed Neural Network Approach
    Oommen, Vivek
    Srinivasan, Balaji
    [J]. JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2022, 22 (04)