Sparse-View Tomographic Reconstruction Using Residual U-Net with Attention Gates

被引:0
作者
Cheng, Chang-Chieh [1 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Informat Technol Serv Ctr, 1001 Univ Rd, Hsinchu, Taiwan
来源
MEDICAL IMAGING 2024: IMAGE PROCESSING | 2024年 / 12926卷
关键词
Computed tomography; sparse-view sampling; U-Net; deep learning; residual connection; attention gate; NEURAL-NETWORK; IMAGE-RECONSTRUCTION; CT RECONSTRUCTION;
D O I
10.1117/12.2688209
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Reconstructing a tomographic image with sparse-view sampling is a major challenge in low-dose computed tomography. Recently, several studies have reported that deep-learning-based methods can reconstruct images of 512 x 512 pixels from 60-view X-ray projections without large artifacts. In this study, a U-Net variant with residual connections and attention gates is proposed for sparse-view computed tomography. A pair of the proposed U-Nets with a loss function based on the structural similarity index measure can be applied to synthesize sparse-view sampling sinograms and denoise reconstructed images. The experimental results indicate the performance of the proposed method is superior to those of other U-Net-based methods for fewer than 60 projection views. Experiments on a public data set of chest tomographic images validated that the proposed method can be used for COVID-19 identification.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Squeeze U-Net: A Memory and Energy Efficient Image Segmentation Network [J].
Beheshti, Nazanin ;
Johnsson, Lennart .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :1495-1504
[2]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[3]   LEARN: Learned Experts' Assessment-Based Reconstruction Network for Sparse-Data CT [J].
Chen, Hu ;
Zhang, Yi ;
Chen, Yunjin ;
Zhang, Junfeng ;
Zhang, Weihua ;
Sun, Huaiqiang ;
Lv, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) :1333-1347
[4]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[5]   Ground-glass opacity (GGO): a review of the differential diagnosis in the era of COVID-19 [J].
Cozzi, Diletta ;
Cavigli, Edoardo ;
Moroni, Chiara ;
Smorchkova, Olga ;
Zantonelli, Giulia ;
Pradella, Silvia ;
Miele, Vittorio .
JAPANESE JOURNAL OF RADIOLOGY, 2021, 39 (08) :721-732
[6]   Cubic-Spline Interpolation for Sparse-View CT Image Reconstruction With Filtered Backprojection in Dynamic Myocardial Perfusion Imaging [J].
Enjilela, Esmaeil ;
Lee, Ting-Yim ;
Wisenberg, Gerald ;
Teefy, Patrick ;
Bagur, Rodrigo ;
Islam, Ali ;
Hsieh, Jiang ;
So, Aaron .
TOMOGRAPHY, 2019, 5 (03) :300-307
[7]   Low-dose X-ray computed tomography image reconstruction with a combined low-mAs and sparse-view protocol [J].
Gao, Yang ;
Bian, Zhaoying ;
Huang, Jing ;
Zhang, Yunwan ;
Niu, Shanzhou ;
Feng, Qianjin ;
Chen, Wufan ;
Liang, Zhengrong ;
Ma, Jianhua .
OPTICS EXPRESS, 2014, 22 (12) :15190-15210
[8]   Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT [J].
Han, Yoseob ;
Ye, Jong Chul .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) :1418-1429
[9]   Hybrid-Domain Neural Network Processing for Sparse-View CT Reconstruction [J].
Hu, Dianlin ;
Liu, Jin ;
Lv, Tianling ;
Zhao, Qianlong ;
Zhang, Yikun ;
Quan, Guotao ;
Feng, Juan ;
Chen, Yang ;
Luo, Limin .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2021, 5 (01) :88-98
[10]  
Huang JH, 2013, PLOS ONE, V8, DOI [10.1371/journal.pone.0068688, 10.1371/journal.pone.0079709]