The determinant of semigroups of the pseudovariety ECOM

被引:0
作者
Shahzamanian, M. H. [1 ]
机构
[1] Univ Porto, CMUP, Fac Ciencias, Dept Matemat, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
关键词
Frobenius algebra; semigroup determinant; paratrophic determinant; semigroup algebra;
D O I
10.1142/S0219498825502731
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to compute the nonzero semigroup determinant of the class of finite semigroups in which every two idempotents commute. This class strictly contains the class of finite semigroups that have central idempotents and the class of finite inverse semigroups. This computation holds significance in the context of the extension of the MacWilliams theorem for codes over semigroup algebras.
引用
收藏
页数:22
相关论文
共 21 条
[1]  
Almeida J., 1994, Finite semigroups and universal algebra, Series in Algebra, V3
[2]  
[Anonymous], 2024, GAP-Groups, Algorithms, and Programming
[3]   FINITE-SEMIGROUPS WITH COMMUTING IDEMPOTENTS [J].
ASH, CJ .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1987, 43 :81-90
[4]  
Assem I., 2006, Elements of the Representation Theory of Associative Algebras Volume 1 Techniques of Representation Theory, V65, DOI 10.1017/CBO9780511614309
[5]  
Benson D.J., 1998, Representations and cohomology. I, V30
[6]  
Clifford A. H., 1961, Mathematical Surveys, V1
[7]   Enlargements, semiabundancy and unipotent monoids [J].
Fountain, J ;
Gomes, GMS ;
Gould, V .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (02) :595-614
[8]  
Frobenius G., 1903, Sitzungsber. Konigl. Preuss. Akad. Wiss, V24, P504
[9]   ON THE STRUCTURE OF SEMIGROUPS [J].
GREEN, JA .
ANNALS OF MATHEMATICS, 1951, 54 (01) :163-172
[10]   SEMIGROUPS AND ORDERED CATEGORIES .1. THE REDUCED CASE [J].
LAWSON, MV .
JOURNAL OF ALGEBRA, 1991, 141 (02) :422-462