Terahertz deep learning fusion computed tomography

被引:2
作者
Hung, Yi-Chun [1 ,2 ]
Su, Weng -Tai [1 ]
Chao, Ta-Hsuan [1 ]
Lin, Chia-Wen [1 ]
Yang, Shang-Hua [1 ,3 ,4 ]
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu, Taiwan
[2] Northwestern Univ, McCormick Sch Engn & Appl Sci, Dept Comp Sci, Evanston, IL 60208 USA
[3] Natl Tsing Hua Univ, Inst Elect Engn, Hsinchu 30013, Taiwan
[4] Natl Tsing Hua Univ, Terahertz Opt & Photon Ctr, Hsinchu 30013, Taiwan
关键词
CARRIER DYNAMICS; SUPERRESOLUTION; RECONSTRUCTION;
D O I
10.1364/OE.518997
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Terahertz (THz) tomographic imaging based on time -resolved THz signals has raised significant attention due to its non-invasive, non-destructive, non -ionizing, material -classification, and ultrafast-frame-rate nature for object exploration and inspection. However, the material and geometric information of the tested objects is inherently embedded in the highly distorted THz time -domain signals, leading to substantial computational complexity and the necessity for intricate multi -physics models to extract the desired information. To address this challenge, we present a THz multi -dimensional tomographic framework and multi -scale spatio-spectral fusion Unet (MS3-Unet), capable of fusing and collaborating the THz signals across diverse signal domains. MS3-Unet employs multi -scale branches to extract spatio-spectral features, which are subsequently processed through element -wise adaptive filters and fused to achieve high -quality THz image restoration. Evaluated by geometry -variant objects, MS3-Unet outperforms other peer methods in PSNR and SSIM. In addition to the superior performance, the proposed framework additionally provides high scalable, adjustable, and accessible interface to collaborate with different user -defined models or methods.
引用
收藏
页码:17763 / 17774
页数:12
相关论文
共 36 条
[11]   Terahertz spatio-temporal deep learning computed tomography [J].
Hung, Yi-Chun ;
Chao, Ta-Hsuan ;
Yu, Pojen ;
Yang, Shang-Hua .
OPTICS EXPRESS, 2022, 30 (13) :22523-22537
[12]  
Kak AvinashC., 2001, Princ. Comput. Tomogr. Imaging, P49
[13]  
Kawase K, 2004, OPT PHOTONICS NEWS, V15, P34, DOI 10.1364/OPN.15.10.000034
[14]   Adaptive terahertz image super-resolution with adjustable convolutional neural network [J].
Li, Yade ;
Hu, Weidong ;
Zhang, Xin ;
Xu, Zhihao ;
Ni, Jiaqi ;
Ligthart, Leo P. .
OPTICS EXPRESS, 2020, 28 (15) :22200-22217
[15]   CNN-based Deblurring of Terahertz Images [J].
Ljubenovic, Marina ;
Bazrafkan, Shabab ;
De Beenhouwer, Jan ;
Sijbers, Jan .
VISAPP: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4: VISAPP, 2020, :323-330
[16]  
Mao XJ, 2016, ADV NEUR IN, V29
[17]   Time resolved synthetic aperture terahertz impulse imaging [J].
McClatchey, K ;
Reiten, MT ;
Cheville, RA .
APPLIED PHYSICS LETTERS, 2001, 79 (27) :4485-4487
[18]   Twenty years of terahertz imaging [Invited] [J].
Mittleman, Daniel M. .
OPTICS EXPRESS, 2018, 26 (08) :9417-9431
[19]   Dynamical electric and magnetic metamaterial response at terahertz frequencies [J].
Padilla, WJ ;
Taylor, AJ ;
Highstrete, C ;
Lee, M ;
Averitt, RD .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[20]   Application of Terahertz Pulse Time-Domain Holography for Phase Imaging [J].
Petrov, Nikolay V. ;
Kulya, Maxim S. ;
Tsypkin, Anton N. ;
Bespalov, Victor G. ;
Gorodetsky, Andrei .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2016, 6 (03) :464-472