Terahertz deep learning fusion computed tomography

被引:2
作者
Hung, Yi-Chun [1 ,2 ]
Su, Weng -Tai [1 ]
Chao, Ta-Hsuan [1 ]
Lin, Chia-Wen [1 ]
Yang, Shang-Hua [1 ,3 ,4 ]
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu, Taiwan
[2] Northwestern Univ, McCormick Sch Engn & Appl Sci, Dept Comp Sci, Evanston, IL 60208 USA
[3] Natl Tsing Hua Univ, Inst Elect Engn, Hsinchu 30013, Taiwan
[4] Natl Tsing Hua Univ, Terahertz Opt & Photon Ctr, Hsinchu 30013, Taiwan
关键词
CARRIER DYNAMICS; SUPERRESOLUTION; RECONSTRUCTION;
D O I
10.1364/OE.518997
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Terahertz (THz) tomographic imaging based on time -resolved THz signals has raised significant attention due to its non-invasive, non-destructive, non -ionizing, material -classification, and ultrafast-frame-rate nature for object exploration and inspection. However, the material and geometric information of the tested objects is inherently embedded in the highly distorted THz time -domain signals, leading to substantial computational complexity and the necessity for intricate multi -physics models to extract the desired information. To address this challenge, we present a THz multi -dimensional tomographic framework and multi -scale spatio-spectral fusion Unet (MS3-Unet), capable of fusing and collaborating the THz signals across diverse signal domains. MS3-Unet employs multi -scale branches to extract spatio-spectral features, which are subsequently processed through element -wise adaptive filters and fused to achieve high -quality THz image restoration. Evaluated by geometry -variant objects, MS3-Unet outperforms other peer methods in PSNR and SSIM. In addition to the superior performance, the proposed framework additionally provides high scalable, adjustable, and accessible interface to collaborate with different user -defined models or methods.
引用
收藏
页码:17763 / 17774
页数:12
相关论文
共 36 条
[1]   Scientific Machine Learning Through Physics-Informed Neural Networks: Where we are and What's Next [J].
Cuomo, Salvatore ;
Di Cola, Vincenzo Schiano ;
Giampaolo, Fabio ;
Rozza, Gianluigi ;
Raissi, Maziar ;
Piccialli, Francesco .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
[2]   Deep learning for terahertz image denoising in nondestructive historical document analysis [J].
Dutta, Balaka ;
Root, Konstantin ;
Ullmann, Ingrid ;
Wagner, Fabian ;
Mayr, Martin ;
Seuret, Mathias ;
Thies, Mareike ;
Stromer, Daniel ;
Christlein, Vincent ;
Schuer, Jan ;
Maier, Andreas ;
Huang, Yixing .
SCIENTIFIC REPORTS, 2022, 12 (01)
[3]   Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy [J].
Duvillaret, L ;
Garet, F ;
Coutaz, JL .
APPLIED OPTICS, 1999, 38 (02) :409-415
[4]   Terahertz Quality Inspection for Automotive and Aviation Industries [J].
Ellrich, F. ;
Bauer, M. ;
Schreiner, N. ;
Keil, A. ;
Pfeiffer, T. ;
Klier, J. ;
Weber, S. ;
Jonuscheit, J. ;
Friederich, F. ;
Molter, D. .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2020, 41 (04) :470-489
[5]  
Fukunaga K, 2016, CULT HERIT SCI, P1, DOI 10.1007/978-4-431-55885-9
[6]   Toward real-time terahertz imaging [J].
Guerboukha, Hichem ;
Nallappan, Kathirvel ;
Skorobogatiy, Maksim .
ADVANCES IN OPTICS AND PHOTONICS, 2018, 10 (04) :843-938
[7]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]   Terahertz digital holographic imaging [J].
Heimbeck, Martin S. ;
Everitt, Henry O. .
ADVANCES IN OPTICS AND PHOTONICS, 2020, 12 (01) :1-59
[10]   Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention [J].
Hou, Zhongwei ;
Cha, Xingzeng ;
An, Hongyu ;
Zhang, Aiyang ;
Lai, Dakun .
ENTROPY, 2023, 25 (03)