GLOBAL DYNAMICS OF A NONLOCAL REACTION-DIFFUSION-ADVECTION TWO-SPECIES PHYTOPLANKTON MODEL

被引:1
作者
Jiang, Danhua [1 ]
Cheng, Shiyuan [1 ]
Li, Yun [2 ]
Wang, Zhi-Cheng [2 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
Phytoplankton; nonlocal reaction-diffusion-advection system; mono tone dynamical system; coexistence; VERTICAL-DISTRIBUTION; COMPETITION; NUTRIENT; EQUATION; GROWTH; DEPTH; LIGHT;
D O I
10.1090/proc/16873
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue our study on the global dynamics of a nonlocal reaction-diffusion-advection system modeling the population dynamics of two competing phytoplankton species in a eutrophic environment, where the species depend solely on light for their metabolism. In our previous works, we proved that system (1.1) is a strongly monotone dynamical system with respect to a non-standard cone, and some competitive exclusion results were obtained. In this paper, we aim to demonstrate the existence of coexistence steady state as well as competitive exclusion. Our results highlight that advection in dispersal strategy can lead to transitions between various competitive outcomes.
引用
收藏
页码:3841 / 3853
页数:13
相关论文
共 35 条
[1]  
Cantrell Robert Stephen, 2003, Wiley Series in Mathematical and Computational Biology, DOI [10.1002/0470871296, DOI 10.1002/0470871296]
[2]   On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics [J].
Du, Yihong ;
Mei, Linfeng .
NONLINEARITY, 2011, 24 (01) :319-349
[3]   ON A NONLOCAL REACTION-DIFFUSION PROBLEM ARISING FROM THE MODELING OF PHYTOPLANKTON GROWTH [J].
Du, Yihong ;
Hsu, Sze-Bi .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (03) :1305-1333
[4]   CONCENTRATION PHENOMENA IN A NONLOCAL QUASI-LINEAR PROBLEM MODELLING PHYTOPLANKTON I: EXISTENCE [J].
Du, Yihong ;
Hsu, Sze-Bi .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (04) :1419-1440
[5]   CONCENTRATION PHENOMENA IN A NONLOCAL QUASI-LINEAR PROBLEM MODELLING PHYTOPLANKTON II: LIMITING PROFILE [J].
Du, Yihong ;
Hsu, Sze-Bi .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (04) :1441-1470
[6]   Critical conditions for phytoplankton blooms [J].
Ebert, U ;
Arrayás, M ;
Temme, N ;
Sommeijer, B ;
Huisman, J .
BULLETIN OF MATHEMATICAL BIOLOGY, 2001, 63 (06) :1095-1124
[7]  
Gilbarg David, 2001, Classics in Mathematics
[8]   Global Dynamics of the Lotka-Volterra Competition-Diffusion System: Diffusion and Spatial Heterogeneity I [J].
He, Xiaoqing ;
Ni, Wei-Ming .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (05) :981-1014
[9]   ON AN ABSTRACT COMPETITION MODEL AND APPLICATIONS [J].
HESS, P ;
LAZER, AC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (11) :917-940
[10]   Competitive exclusion and coexistence for competitive systems on ordered Banach spaces [J].
Hsu, SB ;
Smith, HL ;
Waltman, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (10) :4083-4094