Functional quantile regression with missing data in reproducing kernel Hilbert space

被引:0
|
作者
Yu, Xiao-Ge [1 ]
Liang, Han-Ying [1 ]
机构
[1] Tongji Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic distribution; functional quantile regression; hypothesis test; reproducing kernel Hilbert space; variable selection; VARIABLE SELECTION; PREDICTION;
D O I
10.1080/03610926.2024.2392857
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We, in this article, focus on functional partially linear quantile regression, where the observations are missing at random, which allows the response or covariates or response and covariates simultaneously missing. Estimation of the unknown function is done based on reproducing kernel method. Under suitable assumptions, we discuss consistency with rates of the estimators, and establish asymptotic normality of the estimator for the parameter. At the same time, we study hypothesis test of the parameter, and prove asymptotic distributions of restricted estimators of the parameter and test statistic under null hypothesis and local alternative hypothesis, respectively. Also, we study variable selection of the linear part of the model. By simulation and real data, finite sample performance of the proposed methods is analyzed.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Statistical inference using regularized M-estimation in the reproducing kernel Hilbert space for handling missing data
    Hengfang Wang
    Jae Kwang Kim
    Annals of the Institute of Statistical Mathematics, 2023, 75 : 911 - 929
  • [42] A Gradient Iteration Method for Functional Linear Regression in Reproducing Kernel Hilbert Spaces
    Hongzhi Tong
    Michael Ng
    AnnalsofAppliedMathematics, 2022, 38 (03) : 280 - 295
  • [43] Additive functional regression in reproducing kernel Hilbert spaces under smoothness condition
    Yuzhu Tian
    Hongmei Lin
    Heng Lian
    Zengyan Fan
    Metrika, 2021, 84 : 429 - 442
  • [44] Faster convergence rate for functional linear regression in reproducing kernel Hilbert spaces
    Zhang, Fode
    Zhang, Weiping
    Li, Rui
    Lian, Heng
    STATISTICS, 2020, 54 (01) : 167 - 181
  • [45] Additive functional regression in reproducing kernel Hilbert spaces under smoothness condition
    Tian, Yuzhu
    Lin, Hongmei
    Lian, Heng
    Fan, Zengyan
    METRIKA, 2021, 84 (03) : 429 - 442
  • [46] Data-Driven Optimization: A Reproducing Kernel Hilbert Space Approach
    Bertsimas, Dimitris
    Kodur, Nihal
    OPERATIONS RESEARCH, 2022, 70 (01) : 454 - 471
  • [47] The Henderson Smoother in Reproducing Kernel Hilbert Space
    Dagum, Estela Bee
    Bianconcini, Silvia
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2008, 26 (04) : 536 - 545
  • [48] A Brief Digest on Reproducing Kernel Hilbert Space
    Tong, Shou-yu
    Cong, Fu-zhong
    Wang, Zhi-xia
    INTERNATIONAL CONFERENCE ON COMPUTER, MECHATRONICS AND ELECTRONIC ENGINEERING (CMEE 2016), 2016,
  • [49] Reproducing Kernel Hilbert Spaces for Penalized Regression: A Tutorial
    Nosedal-Sanchez, Alvaro
    Storlie, Curtis B.
    Lee, Thomas C. M.
    Christensen, Ronald
    AMERICAN STATISTICIAN, 2012, 66 (01): : 50 - 60
  • [50] Flexible Expectile Regression in Reproducing Kernel Hilbert Spaces
    Yang, Yi
    Zhang, Teng
    Zou, Hui
    TECHNOMETRICS, 2018, 60 (01) : 26 - 35