Transposed Poisson structures on Lie incidence algebras

被引:0
作者
Kaygorodov, Ivan [1 ]
Khrypchenko, Mykola [2 ,3 ]
机构
[1] Univ Beira Interior, CMA UBI, Covilha, Portugal
[2] Univ Fed Santa Catarina, Dept Matemat, Florianopolis, Brazil
[3] Univ Porto, Fac Ciencias, Dept Matemat, CMUP, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
关键词
Transposed Poisson algebra; Lie incidence algebra; delta-derivation;
D O I
10.1016/j.jalgebra.2024.02.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a finite connected poset, K a field of characteristic zero and I(X, K) the incidence algebra of X over K seen as a Lie algebra under the commutator product. In the first part of the paper we show that any 1/2-derivation of I(X, K) decomposes into the sum of a central-valued 1/2-derivation, an inner 1/2-derivation and a 1/2-derivation associated with a map sigma : X-<(2) -> K that is constant on chains and cycles in X . In the second part of the paper we use this result to prove that any transposed Poisson structure on I(X, K) is the sum of a structure of Poisson type, a mutational structure and a structure determined by lambda : X-is an element of(2) -> K , where X(is an element of)(2 )is the set of (x, y) is an element of X-2 such that x < y is a maximal chain not contained in a cycle. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:458 / 491
页数:34
相关论文
共 25 条
  • [1] Abdurasulov K, 2024, Arxiv, DOI arXiv:2401.04443
  • [2] Transposed Poisson algebras, Novikov-Poisson algebras and 3-Lie algebras
    Bai, Chengming
    Bai, Ruipu
    Guo, Li
    Wu, Yong
    [J]. JOURNAL OF ALGEBRA, 2023, 632 : 535 - 566
  • [3] Transposed Poisson Structures
    Beites, Patricia Damas
    Ferreira, Bruno Leonardo Macedo
    Kaygorodov, Ivan
    [J]. RESULTS IN MATHEMATICS, 2024, 79 (02)
  • [4] The algebraic and geometric classification of transposed Poisson algebras
    Beites, Patricia Damas
    Ouaridi, Amir Fernandez
    Kaygorodov, Ivan
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (02)
  • [5] Poisson algebras via model theory and differential-algebraic geometry
    Bell, Jason
    Launois, Stephane
    Sanchez, Omar Leon
    Moosa, Rahim
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (07) : 2019 - 2049
  • [6] Ferreira BLM, 2021, RACSAM REV R ACAD A, V115, DOI 10.1007/s13398-021-01088-2
  • [7] LIE AUTOMORPHISMS OF INCIDENCE ALGEBRAS
    Fornaroli, Erica Z.
    Khrypchenko, Mykola
    Santulo, Ednei A., Jr.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (04) : 1477 - 1492
  • [8] Poisson deformations of symplectic quotient singularities
    Ginzburg, V
    Kaledin, D
    [J]. ADVANCES IN MATHEMATICS, 2004, 186 (01) : 1 - 57
  • [9] Kaygorodov I., 2024, Commun. Math, V32, P1
  • [10] Transposed Poisson structures on the Lie algebra of upper triangular matrices
    Kaygorodov, Ivan
    Khrypchenko, Mykola
    [J]. PORTUGALIAE MATHEMATICA, 2024, 81 (1-2) : 135 - 149