An unconditionally stable space-time isogeometric method for the acoustic wave equation

被引:2
作者
Fraschini, S. [1 ]
Loli, G. [2 ]
Moiola, A. [2 ,3 ]
Sangalli, G. [2 ,3 ]
机构
[1] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Pavia, Dipartimento Matemat F Casorati, Via A Ferrata 1, I-27100 Pavia, Italy
[3] IMATI CNR Enrico Magenes, Pavia, Italy
基金
奥地利科学基金会;
关键词
Wave equation; Isogeometric analysis; Space-time Galerkin method; Unconditional stability; High-order; DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT METHODS; MOVING BOUNDARIES; DISCRETIZATIONS; APPROXIMATIONS; INTERFACES; STRATEGY;
D O I
10.1016/j.camwa.2024.06.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study space-time isogeometric discretizations of the linear acoustic wave equation that use splines of arbitrary degree p, both in space and time. We propose a space-time variational formulation that is obtained by adding a non-consistent penalty term of order 2p + 2 to the bilinear form coming from integration by parts. This formulation, when discretized with tensor-product spline spaces with maximal regularity in time, is unconditionally stable: the mesh size in time is not constrained by the mesh size in space. We give extensive numerical evidence for the good stability, approximation, dissipation and dispersion properties of the stabilized isogeometric formulation, comparing against stabilized finite element schemes, for a range of wave propagation problems with constant and variable wave speed.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 43 条
[1]   CONTINUOUS FINITE-ELEMENTS IN-SPACE AND TIME FOR THE NONHOMOGENEOUS WAVE-EQUATION [J].
BALES, L ;
LASIECKA, I .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (03) :91-102
[2]   NEGATIVE NORM ESTIMATES FOR FULLY DISCRETE FINITE-ELEMENT APPROXIMATIONS TO THE WAVE-EQUATION WITH NONHOMOGENEOUS L(2) DIRICHLET BOUNDARY DATA [J].
BALES, L ;
LASIECKA, I .
MATHEMATICS OF COMPUTATION, 1995, 64 (209) :89-115
[3]   A TREFFTZ POLYNOMIAL SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR THE SECOND ORDER WAVE EQUATION [J].
Banjai, Lehel ;
Georgoulis, Emmanuil H. ;
Lijoka, Oluwaseun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) :63-86
[4]   Space-time discontinuous Galerkin approximation of acoustic waves with point singularities [J].
Bansal, Pratyuksh ;
Moiola, Andrea ;
Perugia, Ilaria ;
Schwab, Christoph .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (03) :2056-2109
[5]   Space-time Trefftz-DG approximation for elasto-acoustics [J].
Barucq, H. ;
Calandra, H. ;
Diaz, J. ;
Shishenina, E. .
APPLICABLE ANALYSIS, 2020, 99 (05) :747-760
[6]   Approximation in FEM, DG and IGA: a theoretical comparison [J].
Bressan, Andrea ;
Sande, Espen .
NUMERISCHE MATHEMATIK, 2019, 143 (04) :923-942
[7]  
Bruch J. C. Jr., 1974, International Journal for Numerical Methods in Engineering, V8, P481, DOI 10.1002/nme.1620080304
[8]   Space-time adaptive numerical methods for geophysical applications [J].
Castro, C. E. ;
Kaeser, M. ;
Toro, E. F. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1907) :4613-4631
[9]  
Cottrell JA., 2009, Isogeometric analysis: toward integration of CAD and FEA
[10]   Mathematical analysis of variational isogeometric methods [J].
da Veiga, L. Beirao ;
Buffa, A. ;
Sangalli, G. ;
Vazquez, R. .
ACTA NUMERICA, 2014, 23 :157-287