Federated Versus Central Machine Learning on Diabetic Foot Ulcer Images: Comparative Simulations

被引:3
作者
Saeedi, Mahdi [1 ,2 ]
Gorji, Hamed Taheri [1 ,2 ]
Vasefi, Fartash [2 ]
Tavakolian, Kouhyar [1 ]
机构
[1] Univ North Dakota, Dept Biomed Engn, Grand Forks, ND 58201 USA
[2] SafetySpect Inc, Grand Forks, ND 58202 USA
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Comparative simulations; deep learning; diabetic foot ulcer; federated learning; U-Net model; SEGMENTATION;
D O I
10.1109/ACCESS.2024.3392916
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This research examines the implementation of the U-Net model within a federated learning framework, focusing on the semantic segmentation of Diabetic Foot Ulcers (DFUs) images. The objective is to start with a set of random parameters for a U-Net model and train in a federated learning setting and a centralized setting. Due to the sensitive nature of medical images, we use an open-source dataset of diabetic foot ulcers provided by Medetec. Federated learning enables us to decentralize our approach to machine learning, which eliminates the need for centralizing raw data. Methods used include comparative simulations between federated and centralized machine learning systems. The results indicate that federated learning, combined with the U-Net architecture, eliminates centralized data collection and achieves a notable dice score of 0.9, paralleling the performance of centralized models. This conclusion underscores the potential of federated learning in enhancing detection methods for DFUs, balancing privacy concerns with analytical accuracy. Significantly, this study contributes to the biomedical imaging field by providing a set of federated learning codebases that enable interested researchers to reproduce the results and expand upon them. The source code can be accessed via GitHub.
引用
收藏
页码:58960 / 58971
页数:12
相关论文
共 35 条
  • [1] AM-UNet: automated mini 3D end-to-end U-net based network for brain claustrum segmentation
    Albishri, Ahmed Awad
    Shah, Syed Jawad Hussain
    Kang, Seung Suk
    Lee, Yugyung
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (25) : 36171 - 36194
  • [2] Azad R., 2022, arXiv
  • [3] Connected-UNets: a deep learning architecture for breast mass segmentation
    Baccouche, Asma
    Garcia-Zapirain, Begonya
    Olea, Cristian Castillo
    Elmaghraby, Adel S.
    [J]. NPJ BREAST CANCER, 2021, 7 (01)
  • [4] Semantic Segmentation (U-Net) of Archaeological Features in Airborne Laser Scanning-Example of the Bialowieza Forest
    Banasiak, Pawel Zbigniew
    Berezowski, Piotr Leszek
    Zaplata, Rafal
    Mielcarek, Milosz
    Duraj, Konrad
    Sterenczak, Krzysztof
    [J]. REMOTE SENSING, 2022, 14 (04)
  • [5] Bertels J, 2019, Arxiv, DOI [arXiv:1911.01685, DOI 10.48550/ARXIV.1911.01685]
  • [6] Beutel DJ, 2022, Arxiv, DOI arXiv:2007.14390
  • [7] Microstructural segmentation using a union of attention guided U-Net models with different color transformed images
    Biswas, Momojit
    Pramanik, Rishav
    Sen, Shibaprasad
    Sinitca, Aleksandr
    Kaplun, Dmitry
    Sarkar, Ram
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [8] Federated Machine Learning, Privacy-Enhancing Technologies, and Data Protection Laws in Medical Research: Scoping Review
    Brauneck, Alissa
    Schmalhorst, Louisa
    Majdabadi, Mohammad Mahdi Kazemi
    Bakhtiari, Mohammad
    Voelker, Uwe
    Baumbach, Jan
    Baumbach, Linda
    Buchholtz, Gabriele
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2023, 25
  • [9] Albumentations: Fast and Flexible Image Augmentations
    Buslaev, Alexander
    Iglovikov, Vladimir I.
    Khvedchenya, Eugene
    Parinov, Alex
    Druzhinin, Mikhail
    Kalinin, Alexandr A.
    [J]. INFORMATION, 2020, 11 (02)
  • [10] Crowson MG, 2022, PLOS DIGIT HEALTH, V1, DOI 10.1371/journal.pdig.0000033