Unsupervised Resource Allocation with Graph Neural Networks

被引:0
作者
Cranmer, Miles [1 ]
Melchior, Peter [1 ]
Nord, Brian [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
来源
NEURIPS 2020 WORKSHOP ON PRE-REGISTRATION IN MACHINE LEARNING, VOL 148 | 2020年 / 148卷
关键词
Graph Neural Networks; Resource Allocation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an approach for maximizing a global utility function by learning how to allocate resources in an unsupervised way. We expect interactions between allocation targets to be important and therefore propose to learn the reward structure for near-optimal allocation policies with a GNN. By relaxing the resource constraint, we can employ gradient-based optimization in contrast to more standard evolutionary algorithms. Our algorithm is motivated by a problem in modern astronomy, where one needs to select-based on limited initial information-among 109 galaxies those whose detailed measurement will lead to optimal inference of the composition of the universe. Our technique presents a way of flexibly learning an allocation strategy by only requiring forward simulators for the physics of interest and the measurement process. We anticipate that our technique will also find applications in a range of allocation problems from social science studies to customer satisfaction surveys and exploration strategies of autonomous agents.
引用
收藏
页码:272 / 284
页数:13
相关论文
共 25 条
[11]   Resource Allocation via Graph Neural Networks in Free Space Optical Fronthaul Networks [J].
Gao, Zhan ;
Eisen, Mark ;
Ribeiro, Alejandro .
2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
[12]  
Gilmer J, 2017, PR MACH LEARN RES, V70
[13]   Policy-GNN: Aggregation Optimization for Graph Neural Networks [J].
Lai, Kwei-Herng ;
Zha, Daochen ;
Zhou, Kaixiong ;
Hu, Xia .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :461-471
[14]  
Levi ME, 2019, Arxiv, DOI arXiv:1907.10688
[15]   A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning [J].
Liu, Ning ;
Li, Zhe ;
Xu, Jielong ;
Xu, Zhiyuan ;
Lin, Sheng ;
Qiu, Qinru ;
Tang, Jian ;
Wang, Yanzhi .
2017 IEEE 37TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2017), 2017, :372-382
[16]   A Framework for Telescope Schedulers: With Applications to the Large Synoptic Survey Telescope [J].
Naghib, Elahesadat ;
Yoachim, Peter ;
Vanderbei, Robert J. ;
Connolly, Andrew J. ;
Jones, R. Lynne .
ASTRONOMICAL JOURNAL, 2019, 157 (04)
[17]   The Graph Neural Network Model [J].
Scarselli, Franco ;
Gori, Marco ;
Tsoi, Ah Chung ;
Hagenbuchner, Markus ;
Monfardini, Gabriele .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (01) :61-80
[18]   Mastering the game of Go with deep neural networks and tree search [J].
Silver, David ;
Huang, Aja ;
Maddison, Chris J. ;
Guez, Arthur ;
Sifre, Laurent ;
van den Driessche, George ;
Schrittwieser, Julian ;
Antonoglou, Ioannis ;
Panneershelvam, Veda ;
Lanctot, Marc ;
Dieleman, Sander ;
Grewe, Dominik ;
Nham, John ;
Kalchbrenner, Nal ;
Sutskever, Ilya ;
Lillicrap, Timothy ;
Leach, Madeleine ;
Kavukcuoglu, Koray ;
Graepel, Thore ;
Hassabis, Demis .
NATURE, 2016, 529 (7587) :484-+
[19]   Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces [J].
Storn, R ;
Price, K .
JOURNAL OF GLOBAL OPTIMIZATION, 1997, 11 (04) :341-359
[20]  
Tabibian B, 2020, PR MACH LEARN RES, V124, P171