Counting connected partitions of graphs

被引:0
作者
Caro, Yair [1 ]
Patkos, Balazs [2 ]
Tuza, Zsolt [2 ,3 ]
Vizer, Mate [2 ]
机构
[1] Univ Haifa, Dept Math, Haifa, Israel
[2] Alfred Reny Inst Math, Budapest, Hungary
[3] Univ Pannonia, Veszprem, Hungary
关键词
connected partitions; graph partitions; EDGES; CUT;
D O I
10.1002/jgt.23127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the theorem of Gy & odblac;ri and Lov & aacute;sz, we consider the following problem. For a connected graph G $G$ on n $n$ vertices and m $m$ edges determine the number P(G,k) $P(G,k)$ of unordered solutions of positive integers & sum;i=1kmi=m ${\sum }_{i=1}<^>{k}{m}_{i}=m$ such that every mi ${m}_{i}$ is realized by a connected subgraph Hi ${H}_{i}$ of G $G$ with mi ${m}_{i}$ edges. We also consider the vertex-partition analogue. We prove various lower bounds on P(G,k) $P(G,k)$ as a function of the number n $n$ of vertices in G $G$, as a function of the average degree d $d$ of G $G$, and also as the size CMCr(G) $CM{C}_{r}(G)$ of r $r$-partite connected maximum cuts of G $G$. Those three lower bounds are tight up to a multiplicative constant. We also prove that the number pi(G,k) $\pi (G,k)$ of unordered k $k$-tuples with & sum;i=1kni=n ${\sum }_{i=1}<^>{k}{n}_{i}=n$, that are realizable by vertex partitions into k $k$ connected parts, is at least Omega(dk-1) ${\rm{\Omega }}({d}<^>{k-1})$.
引用
收藏
页码:381 / 392
页数:12
相关论文
共 24 条
[1]   More Aspects of Arbitrarily Partitionable Graphs [J].
Bensmail, Julien ;
Li, Binlong .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (04) :1237-1261
[2]   On the number of edges in a graph with no (k+1)-connected subgraphs [J].
Bernshteyn, Anton ;
Kostochka, Alexandr .
DISCRETE MATHEMATICS, 2016, 339 (02) :682-688
[3]  
Borndorfer R., 2021, APPROXIMATION RANDOM, V207
[4]  
Carmesin J., 2020, PREPRINT
[5]  
Casel K., 2022, PREPRINT
[6]   CONNECTIVITY OF LINE-GRAPHS [J].
CHARTRAND, G ;
STEWART, MJ .
MATHEMATISCHE ANNALEN, 1969, 182 (03) :170-+
[7]   ON THE COMPLEXITY OF PARTITIONING GRAPHS INTO CONNECTED SUBGRAPHS [J].
DYER, ME ;
FRIEZE, AM .
DISCRETE APPLIED MATHEMATICS, 1985, 10 (02) :139-153
[8]  
Erds P., 1941, Duke Math. J, V8, P335, DOI DOI 10.1215/S0012-7094-41-00826-8
[9]  
Graham R. L., 1995, HDB COMBINATORICS, V1-2
[10]  
Gyori E., 1978, Colloq. Math. Soc. Janos Bolyai, V18, P485