Enhancing lymph node metastasis prediction in adenocarcinoma of the esophagogastric junction: A study combining radiomic with clinical features

被引:1
作者
Zheng, Hui-da [1 ]
Tian, Yu-chi [2 ]
Huang, Qiao-yi [3 ]
Huang, Qi-ming [4 ]
Ke, Xiao-ting [4 ]
Xu, Jian-hua [1 ]
Liang, Xiao-yun [2 ]
Lin, Shu [5 ]
Ye, Kai [1 ]
机构
[1] Fujian Med Univ, Affiliated Hosp 2, Dept Gastrointestinal Surg, Quanzhou 362000, Fujian, Peoples R China
[2] Neusoft Med Syst Co Ltd, Inst Res & Clin Innovat, Shanghai, Peoples R China
[3] Fujian Med Univ, Affiliated Hosp 2, Dept Gynaecol & Obstet, Quanzhou, Fujian, Peoples R China
[4] Fujian Med Univ, Affiliated Hosp 2, Dept CT MRI, Quanzhou, Fujian, Peoples R China
[5] Fujian Med Univ, Affiliated Hosp 2, Ctr Neurol & Metab Res, Quanzhou, Fujian, Peoples R China
关键词
adenocarcinoma of the esophagogastric junction; computed tomography; gastric cancer; lymph node metastasis; radiomics; GASTRIC-CANCER; ESOPHAGUS; NOMOGRAM; NUMBER;
D O I
10.1002/mp.17374
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundThe incidence of adenocarcinoma of the esophagogastric junction (AEJ) is increasing, and with poor prognosis. Lymph node status (LNs) is particularly important for planning treatment and evaluating the prognosis of patients with AEJ. However, the use of radiomic based on enhanced computed tomography (CT) to predict the preoperative lymph node metastasis (PLNM) status of the AEJ has yet to be reported.PurposeWe sought to investigate the value of radiomic features based on enhanced CT in the accurate prediction of PLNM in patients with AEJ.MethodsClinical features and enhanced CT data of 235 patients with AEJ from October 2017 to May 2023 were retrospectively analyzed. The data were randomly assigned to the training cohort (n = 164) or the external testing cohort (n = 71) at a ratio of 7:3. A CT-report model, clinical model, radiomic model, and radiomic-clinical combined model were developed to predict PLNM in patients with AEJ. Univariate and multivariate logistic regression were used to screen for independent clinical risk factors. Least absolute shrinkage and selection operator (LASSO) regression was used to select the radiomic features. Finally, a nomogram for the preoperative prediction of PLNM in AEJ was constructed by combining Radiomics-score and clinical risk factors. The models were evaluated by area under the receiver operating characteristic curve (AUC-ROC), calibration curve, and decision curve analyses.ResultsA total of 181 patients (181/235, 77.02%) had LNM. In the testing cohort, the AUC of the radiomic-clinical model was 0.863 [95% confidence interval (CI) = 0.738-0.957], and the radiomic model (0.816; 95% CI = 0.681-0.929), clinical model (0.792; 95% CI = 0.677-0.888), and CT-report model (0.755; 95% CI = 0.647-0.840).ConclusionThe radiomic-clinical model is a feasible method for predicting PLNM in patients with AEJ, helping to guide clinical decision-making and personalized treatment planning.
引用
收藏
页码:9057 / 9070
页数:14
相关论文
共 45 条
[1]   Gastric Cancer, Version 2.2022 [J].
Ajani, Jaffer A. ;
D'Amico, Thomas A. ;
Bentrem, David J. ;
Chao, Joseph ;
Cooke, David ;
Corvera, Carlos ;
Das, Prajnan ;
Enzinger, Peter C. ;
Enzler, Thomas ;
Fanta, Paul ;
Farjah, Farhood ;
Gerdes, Hans ;
Gibson, Michael K. ;
Hochwald, Steven ;
Hofstetter, Wayne L. ;
Ilson, David H. ;
Keswani, Rajesh N. ;
Kim, Sunnie ;
Kleinberg, Lawrence R. ;
Klempner, Samuel J. ;
Lacy, Jill ;
Ly, Quan P. ;
Matkowskyj, Kristina A. ;
McNamara, Michael ;
Mulcahy, Mary F. ;
Outlaw, Darryl ;
Park, Haeseong ;
Perry, Kyle A. ;
Pimiento, Jose ;
Poultsides, George A. ;
Reznik, Scott ;
Roses, Robert E. ;
Strong, Vivian E. ;
Su, Stacey ;
Wang, Hanlin L. ;
Wiesner, Georgia ;
Willett, Christopher G. ;
Yakoub, Danny ;
Yoon, Harry ;
McMillian, Nicole ;
Pluchino, Lenora A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (02) :167-192
[2]   Effect of Neoadjuvant Chemotherapy Followed by Surgical Resection on Survival in Patients With Limited Metastatic Gastric or Gastroesophageal Junction Cancer The AIO-FLOT3 Trial [J].
Al-Batran, Salah-Eddin ;
Homann, Nils ;
Pauligk, Claudia ;
Illerhaus, Gerald ;
Martens, Uwe M. ;
Stoehlmacher, Jan ;
Schmalenberg, Harald ;
Luley, Kim B. ;
Prasnikar, Nicole ;
Egger, Matthias ;
Probst, Stephan ;
Messmann, Helmut ;
Moehler, Markus ;
Fischbach, Wolfgang ;
Hartmann, Joerg T. ;
Mayer, Frank ;
Hoeffkes, Heinz-Gert ;
Koenigsmann, Michael ;
Arnold, Dirk ;
Kraus, Thomas W. ;
Grimm, Kersten ;
Berkhoff, Stefan ;
Post, Stefan ;
Jager, Elke ;
Bechstein, Wolf ;
Ronellenfitsch, Ulrich ;
Moenig, Stefan ;
Hofheinz, Ralf D. .
JAMA ONCOLOGY, 2017, 3 (09) :1237-1244
[3]   Bravais-Pearson and Spearman correlation coefficients: meaning, test of hypothesis and confidence interval [J].
Artusi, R ;
Verderio, P ;
Marubini, E .
INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, 2002, 17 (02) :148-151
[4]   Relationship Between Radiomics and Risk of Lymph Node Metastasis in Pancreatic Ductal Adenocarcinoma [J].
Bian, Yun ;
Guo, Shiwei ;
Jiang, Hui ;
Gao, Suizhi ;
Shao, Chenwei ;
Cao, Kai ;
Fang, Xu ;
Li, Jing ;
Wang, Li ;
Hua, Wenda ;
Zheng, Jianming ;
Jin, Gang ;
Lu, Jianping .
PANCREAS, 2019, 48 (09) :1195-1203
[5]   Preoperative prediction of lymph node metastasis using deep learning-based features [J].
Cattell, Renee ;
Ying, Jia ;
Lei, Lan ;
Ding, Jie ;
Chen, Shenglan ;
Sosa, Mario Serrano ;
Huang, Chuan .
VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2022, 5 (01)
[6]   Predictors of Lymph Node Metastasis in Siewert Type II T1 Adenocarcinoma of the Esophagogastric Junction: A Population-Based Study [J].
Chen, Liubo ;
Tang, Kejun ;
Wang, Sihan ;
Chen, Dongdong ;
Ding, Kefeng .
CANCER CONTROL, 2021, 28
[7]   Radiomics in precision medicine for gastric cancer: opportunities and challenges [J].
Chen, Qiuying ;
Zhang, Lu ;
Liu, Shuyi ;
You, Jingjing ;
Chen, Luyan ;
Jin, Zhe ;
Zhang, Shuixing ;
Zhang, Bin .
EUROPEAN RADIOLOGY, 2022, 32 (09) :5852-5868
[8]   State-of-the-art preoperative staging of gastric cancer by MDCT and magnetic resonance imaging [J].
Choi, Joon-Il ;
Joo, Ijin ;
Lee, Jeong Min .
WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (16) :4546-4557
[9]   DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data [J].
Dablain, Damien ;
Krawczyk, Bartosz ;
Chawla, Nitesh, V .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) :6390-6404
[10]   mRMRe: an R package for parallelized mRMR ensemble feature selection [J].
De Jay, Nicolas ;
Papillon-Cavanagh, Simon ;
Olsen, Catharina ;
El-Hachem, Nehme ;
Bontempi, Gianluca ;
Haibe-Kains, Benjamin .
BIOINFORMATICS, 2013, 29 (18) :2365-2368