On the design of searching algorithm for parameter plateau in quantitative trading strategies using particle swarm optimization

被引:2
作者
Wu, Jimmy Ming-Tai [1 ]
Lin, Wen-Yu [2 ]
Huang, Ko-Wei [1 ]
Wu, Mu-En [2 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Kaohsiung, Taiwan
[2] Natl Taipei Univ Technol, Taipei, Taiwan
关键词
Quantitative trading; Trading strategy; Parameter plateau; Optimization algorithm; Uniform design; Particle swarm optimization;
D O I
10.1016/j.knosys.2024.111630
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative trading, relying on diverse parameter combinations, is becoming increasingly the norm for trading strategies in financial investments. The performance of these strategies is intricately linked to these parameters. However, the performance on the training set after backtesting does not ensure success on a test set and may lead to overfitting. This study emphasizes enhancing stability and robustness in trading -strategy parameters by introducing a 'parameter plateau.' Traditional brute -force methods for exploring high -dimensional parameter spaces can be intricate and time-consuming. To address this challenge, we present an efficient alternative that identifies stable and robust parameters by configuring parameter plateaus to mitigate overfitting risks. A step-by-step search algorithm is proposed to determine the optimal parameters, leveraging the power of particle -swarm optimization. In continuous, multi -dimensional solution spaces, particle -swarm optimization is invaluable for the swift and effective discovery of the desired solutions. Experiments underscore the substantial influence of the parameter plateau concept on parameter selection, highlighting the pivotal role of particleswarm optimization in efficiently navigating complex solution spaces and thereby enabling the discovery of stable and profitable trading strategies.
引用
收藏
页数:14
相关论文
共 41 条
[21]   On the maximum drawdown of a Brownian motion [J].
Magdon-Ismail, M ;
Atiya, AF ;
Pratap, A ;
Abu-Mostafa, YS .
JOURNAL OF APPLIED PROBABILITY, 2004, 41 (01) :147-161
[22]  
Magdon-Ismail M., 2004, Risk Magazine, V17, P99
[23]  
MITCHELL T, 1989, ANNU REV COMPUT SCI, V4, P417
[24]  
Montenegro C., 2020, Int. J. Mach. Learn. Comput., V10
[25]   An innovative neural network approach for stock market prediction [J].
Pang, Xiongwen ;
Zhou, Yanqiang ;
Wang, Pan ;
Lin, Weiwei ;
Chang, Victor .
JOURNAL OF SUPERCOMPUTING, 2020, 76 (03) :2098-2118
[26]   Multi-agent reinforcement learning approach for hedging portfolio problem [J].
Pham, Uyen ;
Luu, Quoc ;
Tran, Hien .
SOFT COMPUTING, 2021, 25 (12) :7877-7885
[27]   Forecasting stock prices with long-short term memory neural network based on attention mechanism [J].
Qiu, Jiayu ;
Wang, Bin ;
Zhou, Changjun .
PLOS ONE, 2020, 15 (01)
[28]  
Raghunath Aparna, 2021, Machine Learning for Predictive Analysis. Proceedings of ICTIS 2020. Lecture Notes in Networks and Systems (LNNS 141), P209, DOI 10.1007/978-981-15-7106-0_21
[29]   THE SHARPE RATIO [J].
SHARPE, WF .
JOURNAL OF PORTFOLIO MANAGEMENT, 1994, 21 (01) :49-58
[30]   Portfolio Optimization-Based Stock Prediction Using Long-Short Term Memory Network in Quantitative Trading [J].
Ta, Van-Dai ;
Liu, Chuan-Ming ;
Tadesse, Direselign Addis .
APPLIED SCIENCES-BASEL, 2020, 10 (02)