On the design of searching algorithm for parameter plateau in quantitative trading strategies using particle swarm optimization

被引:2
作者
Wu, Jimmy Ming-Tai [1 ]
Lin, Wen-Yu [2 ]
Huang, Ko-Wei [1 ]
Wu, Mu-En [2 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Kaohsiung, Taiwan
[2] Natl Taipei Univ Technol, Taipei, Taiwan
关键词
Quantitative trading; Trading strategy; Parameter plateau; Optimization algorithm; Uniform design; Particle swarm optimization;
D O I
10.1016/j.knosys.2024.111630
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative trading, relying on diverse parameter combinations, is becoming increasingly the norm for trading strategies in financial investments. The performance of these strategies is intricately linked to these parameters. However, the performance on the training set after backtesting does not ensure success on a test set and may lead to overfitting. This study emphasizes enhancing stability and robustness in trading -strategy parameters by introducing a 'parameter plateau.' Traditional brute -force methods for exploring high -dimensional parameter spaces can be intricate and time-consuming. To address this challenge, we present an efficient alternative that identifies stable and robust parameters by configuring parameter plateaus to mitigate overfitting risks. A step-by-step search algorithm is proposed to determine the optimal parameters, leveraging the power of particle -swarm optimization. In continuous, multi -dimensional solution spaces, particle -swarm optimization is invaluable for the swift and effective discovery of the desired solutions. Experiments underscore the substantial influence of the parameter plateau concept on parameter selection, highlighting the pivotal role of particleswarm optimization in efficiently navigating complex solution spaces and thereby enabling the discovery of stable and profitable trading strategies.
引用
收藏
页数:14
相关论文
共 41 条
[1]  
Al-Radaideh Q.A., 2013, INT ARAB C INFORM TE
[2]  
Anthony M., 2009, Neural Network Learning: Theoretical Foundations
[3]   Technical analysis strategy optimization using a machine learning approach in stock market indices [J].
Ayala, Jordan ;
Garcia-Torres, Miguel ;
Noguera, Jose Luis Vazquez ;
Gomez-Vela, Francisco ;
Divina, Federico .
KNOWLEDGE-BASED SYSTEMS, 2021, 225
[4]   The probability of backtest overfitting [J].
Bailey, David H. ;
Borwein, Jonathan M. ;
de Prado, Marcos Lopez ;
Zhu, Qiji Jim .
JOURNAL OF COMPUTATIONAL FINANCE, 2017, 20 (04) :39-69
[5]   Defining a standard for particle swarm optimization [J].
Bratton, Daniel ;
Kennedy, James .
2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2007, :120-+
[6]   Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction [J].
Cao, Bin ;
Zhao, Jianwei ;
Lv, Zhihan ;
Gu, Yu ;
Yang, Peng ;
Halgamuge, Saman K. .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (05) :939-952
[7]   An Effective Approach for Obtaining a Group Trading Strategy Portfolio Using Grouping Genetic Algorithm [J].
Chen, Chun-Hao ;
Chen, Yu-Hsuan ;
Lin, Jerry Chun-Wei ;
Wu, Mu-En .
IEEE ACCESS, 2019, 7 :7313-7325
[8]  
Daskalakis G., 2008, Review of Futures Markets, V17, P103
[9]  
Dowd K., 2000, International Review of Economics and Finance, V9, P209, DOI DOI 10.1016/S1059-0560(00)00063-0
[10]  
Fang Kai-tai, 1980, Acta Mathematicae Applacatae Sinica, V3, P363