Crossing cubic Lie algebras

被引:1
作者
Al-Masarwah, Anas [1 ]
Kdaisat, Nadeen [2 ]
Abuqamar, Majdoleen [3 ]
Alsager, Kholood [4 ]
机构
[1] Ajloun Natl Univ, Fac Sci, Dept Math, POB 43, Ajloun, Jordan
[2] Yarmouk Univ, Dept Math, Shafiq Irshidat St, Irbid 21163, Jordan
[3] Jadara Univ, Fac Sci & Informat Technol, Dept Math, Irbid 21110, Jordan
[4] Qassim Univ, Coll Sci, Dept Math, Buraydah, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 08期
关键词
Lie algebras; crossing cubic Lie algebras; crossing cubic fields; crossing cubic solvable Lie algebras; crossing cubic nilpotent Lie algebras; fuzzy logic; IDEALS;
D O I
10.3934/math.20241075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An interval-valued fuzziness structure is an effective approach addressing ambiguity and for expressing people's hesitation in everyday situations. An N-structure is a novel technique for solving practical problems. This is beneficial for resolving a variety of issues, and a lot of progress is being made right now. In order to develop crossing cubic structures (CCSs), Jun et al. amalgamate interval-valued fuzziness and N-structures. In this manuscript, our main contribution is to originate the concepts of crossing cubic (CC) Lie algebra, CC Lie sub-algebra, ideal, and homomorphism. We investigate some properties of these concepts. In a Lie algebra, the construction of a quotient Lie algebra via the CC Lie ideal is provided. Furthermore, the CC isomorphism theorems are presented.
引用
收藏
页码:22112 / 22129
页数:18
相关论文
共 28 条
[11]  
Dorst L., 2007, GEOMETRIC ALGEBRA CO, DOI DOI 10.1016/j.patcog.2012.02.033
[12]   NORMAL AND COSETS OF (γ,partial derivative)-FUZZY HX-SUBGROUPS [J].
Fallatah, Ahlam ;
Massa'deh, Mourad Oqla ;
Alkouri, Abd Ulazeez .
JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (3-4) :719-727
[13]   Group algebras and coding theory [J].
Guerreiro M. .
São Paulo Journal of Mathematical Sciences, 2016, 10 (2) :346-371
[14]  
Humphreys JE., 1972, INTRO LIE ALGEBRAS R, DOI DOI 10.1007/978-1-4612-6398-2
[15]  
Jun Y. B., 2009, J CHUNGCHEONG MATH S, V22, P417
[16]  
Jun Y. B., 2021, J. Algebraic Hyperstructures Logical Algebras, V2, P17, DOI [10.52547/HATEF.JAHLA.2.1.2, DOI 10.52547/HATEF.JAHLA.2.1.2]
[17]  
Jun YB., 2012, ANN FUZZY MATH INFOR, V4, P83
[18]  
JUN YOUNG BAE, 2021, ANNALS OF FUZZY MATHEMATICS AND INFORMATICS, V22, P1, DOI 10.30948/afmi.2021.22.1.1
[19]   m-Polar cubic p(q and a)-ideals of BCI-algebras [J].
Mahboob, Ahsan ;
Muhiuddin, G. .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (02)
[20]  
Mostafa Samy M., 2022, ANNALS OF FUZZY MATHEMATICS AND INFORMATICS, V24, P55, DOI 10.30948/afmi.2022.24.1.55