freeCount: A Coding Free Framework for Guided Count Data Visualization and Analysis

被引:0
|
作者
Brooks, Elizabeth M. [1 ]
Sanders, Sheri A. [1 ]
Pfrender, Michael E. [1 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
来源
PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING 2024, PEARC 2024 | 2024年
基金
美国国家科学基金会;
关键词
R Shiny; Interactive Interfaces; Analysis Framework; Genomics; Transcriptomics; Metagenomics;
D O I
10.1145/3626203.3670605
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The analysis and interpretation of high-dimensional biological data sets is a challenging task. Exploratory data analysis of count data produced by next-generation sequencing technologies presents a common hurdle to researchers. Biologists often find it difficult to get started with the analysis process, which can be time consuming and repetitive. With the freeCount analysis framework students and researchers are guided through the iterative steps of data assessment, processing, and analysis in a visual environment. The freeCount analysis framework takes advantage of the reactive features of R Shiny to deliver a set of modular and interactive tools and tutorials for the structured analysis and visualization of count data.
引用
收藏
页数:4
相关论文
共 46 条
  • [1] MOSCA 2.0: A bioinformatics framework for metagenomics, metatranscriptomics and metaproteomics data analysis and visualization
    Sequeira, Joao C.
    Pereira, Vitor
    Alves, M. Madalena
    Pereira, M. Alcina
    Rocha, Miguel
    Salvador, Andreia F.
    MOLECULAR ECOLOGY RESOURCES, 2024, 24 (07)
  • [2] Bipartite Graphs for Visualization Analysis of Microbiome Data
    Sedlar, Karel
    Videnska, Petra
    Skutkova, Helena
    Rychlik, Ivan
    Provaznik, Ivo
    EVOLUTIONARY BIOINFORMATICS, 2016, 12 : 17 - 23
  • [3] Bipartite Graphs for Metagenomic Data Analysis and Visualization
    Sedlar, Karel
    Skutkova, Helena
    Videnska, Petra
    Rychlik, Ivan
    Provaznik, Ivo
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 1123 - 1128
  • [4] PIVOT: platform for interactive analysis and visualization of transcriptomics data
    Qin Zhu
    Stephen A. Fisher
    Hannah Dueck
    Sarah Middleton
    Mugdha Khaladkar
    Junhyong Kim
    BMC Bioinformatics, 19
  • [5] PIVOT: platform for interactive analysis and visualization of transcriptomics data
    Zhu, Qin
    Fisher, Stephen A.
    Dueck, Hannah
    Middleton, Sarah
    Khaladkar, Mugdha
    Kim, Junhyong
    BMC BIOINFORMATICS, 2018, 19
  • [6] Analysis and correction of compositional bias in sparse sequencing count data
    Kumar, M. Senthil
    Slud, Eric V.
    Okrah, Kwame
    Hicks, Stephanie C.
    Hannenhalli, Sridhar
    Bravo, Hector Corrada
    BMC GENOMICS, 2018, 19
  • [7] Analysis and correction of compositional bias in sparse sequencing count data
    M. Senthil Kumar
    Eric V. Slud
    Kwame Okrah
    Stephanie C. Hicks
    Sridhar Hannenhalli
    Héctor Corrada Bravo
    BMC Genomics, 19
  • [8] How to normalize metatranscriptomic count data for differential expression analysis
    Klingenberg, Heiner
    Meinicke, Peter
    PEERJ, 2017, 5
  • [9] Anvi'o: an advanced analysis and visualization platformfor 'omics data
    Eren, A. Murat
    Esen, Ozcan C.
    Quince, Christopher
    Vineis, Joseph H.
    Morrison, Hilary G.
    Sogin, Mitchell L.
    Delmont, Tom O.
    PEERJ, 2015, 3
  • [10] eDAVE - Extension of GDC data analysis, visualization, and exploration tools
    Binkowski, Jan
    Taryma-Lesnial, Olga
    Sokolowska, Katarzyna Ewa
    Przybylowicz, Patrycja Kamila
    Staszewski, Melanie
    Wojdacz, Tomasz Kazimierz
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 5446 - 5450