Benchmarking of quantum fidelity kernels for Gaussian process regression

被引:0
作者
Guo, Xuyang [1 ]
Dai, Jun [1 ]
Krems, Roman, V [2 ]
机构
[1] Univ British Columbia, Dept Chem, BC V6T 1Z1, Vancouver, BC, Canada
[2] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC, Canada
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2024年 / 5卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
quantum machine learning; quantum kernel methods; Gaussian process regression; potential energy surface fitting; quantum dynamics; machine learning; ALGORITHM; CHEMISTRY;
D O I
10.1088/2632-2153/ad7cc1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum computing algorithms have been shown to produce performant quantum kernels for machine-learning classification problems. Here, we examine the performance of quantum kernels for regression problems of practical interest. For an unbiased benchmarking of quantum kernels, it is necessary to construct the most optimal functional form of the classical kernels and the most optimal quantum kernels for each given data set. We develop an algorithm that uses an analog of the Bayesian information criterion to optimize the sequence of quantum gates used to estimate quantum kernels for Gaussian process models. The algorithm increases the complexity of the quantum circuits incrementally, while improving the performance of the resulting kernels, and is shown to yield much higher model accuracy with fewer quantum gates than a fixed quantum circuit ansatz. We demonstrate that quantum kernels thus obtained can be used to build accurate models of global potential energy surfaces (PES) for polyatomic molecules. The average interpolation error of the six-dimensional PES obtained with a random distribution of 2000 energy points is 16 cm-1 for H3O+, 15 cm-1 for H2CO and 88 cm-1 for HNO2. We show that a compositional optimization of classical kernels for Gaussian process regression converges to the same errors. This indicates that quantum kernels can achieve the same, though not better, expressivity as classical kernels for regression problems.
引用
收藏
页数:16
相关论文
共 118 条
  • [91] Senekane M., 2016, Sci. Res. Publishing, V7, P293, DOI DOI 10.4236/SGRE.2016.712022
  • [92] Vedaie SS, 2020, Arxiv, DOI [arXiv:2011.09694, 10.48550/ARXIV.2011.09694]
  • [93] Benchmarking of different optimizers in the variational quantum algorithms for applications in quantum chemistry
    Singh, Harshdeep
    Majumder, Sonjoy
    Mishra, Sabyashachi
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (04)
  • [94] Sohl-Dickstein J, 2020, Arxiv, DOI arXiv:2001.07301
  • [95] A kernel-based quantum random forest for improved classification
    Srikumar, Maiyuren
    Hill, Charles D.
    Hollenberg, Lloyd C. L.
    [J]. QUANTUM MACHINE INTELLIGENCE, 2024, 6 (01)
  • [96] Sünkel L, 2023, Arxiv, DOI [arXiv:2302.01303, DOI 10.48550/ARXIV.2302.01303]
  • [97] Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open Shell Molecules
    Sugisaki, Kenji
    Yamamoto, Satoru
    Nakazawa, Shigeaki
    Toyota, Kazuo
    Sato, Kazunobu
    Shiomi, Daisuke
    Takui, Takeji
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (32) : 6459 - 6466
  • [98] Suzuki T, 2024, Arxiv, DOI arXiv:2307.02091
  • [99] Predicting toxicity by quantum machine learning
    Suzuki, Teppei
    Katouda, Michio
    [J]. JOURNAL OF PHYSICS COMMUNICATIONS, 2020, 4 (12):
  • [100] Compositional optimization of quantum circuits for quantum kernels of support vector machines
    Torabian, Elham
    Krems, Roman V.
    [J]. PHYSICAL REVIEW RESEARCH, 2023, 5 (01):