Benchmarking of quantum fidelity kernels for Gaussian process regression

被引:0
作者
Guo, Xuyang [1 ]
Dai, Jun [1 ]
Krems, Roman, V [2 ]
机构
[1] Univ British Columbia, Dept Chem, BC V6T 1Z1, Vancouver, BC, Canada
[2] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC, Canada
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2024年 / 5卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
quantum machine learning; quantum kernel methods; Gaussian process regression; potential energy surface fitting; quantum dynamics; machine learning; ALGORITHM; CHEMISTRY;
D O I
10.1088/2632-2153/ad7cc1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum computing algorithms have been shown to produce performant quantum kernels for machine-learning classification problems. Here, we examine the performance of quantum kernels for regression problems of practical interest. For an unbiased benchmarking of quantum kernels, it is necessary to construct the most optimal functional form of the classical kernels and the most optimal quantum kernels for each given data set. We develop an algorithm that uses an analog of the Bayesian information criterion to optimize the sequence of quantum gates used to estimate quantum kernels for Gaussian process models. The algorithm increases the complexity of the quantum circuits incrementally, while improving the performance of the resulting kernels, and is shown to yield much higher model accuracy with fewer quantum gates than a fixed quantum circuit ansatz. We demonstrate that quantum kernels thus obtained can be used to build accurate models of global potential energy surfaces (PES) for polyatomic molecules. The average interpolation error of the six-dimensional PES obtained with a random distribution of 2000 energy points is 16 cm-1 for H3O+, 15 cm-1 for H2CO and 88 cm-1 for HNO2. We show that a compositional optimization of classical kernels for Gaussian process regression converges to the same errors. This indicates that quantum kernels can achieve the same, though not better, expressivity as classical kernels for regression problems.
引用
收藏
页数:16
相关论文
共 118 条
  • [1] On quantum ensembles of quantum classifiers
    Abbas, Amira
    Schuld, Maria
    Petruccione, Francesco
    [J]. QUANTUM MACHINE INTELLIGENCE, 2020, 2 (01)
  • [2] Completely quantum neural networks
    Abel, Steve
    Criado, Juan C.
    Spannowsky, Michael
    [J]. PHYSICAL REVIEW A, 2022, 106 (02)
  • [3] Alemi A. A., 2020, INT C LEARN REPR
  • [4] Automatic design of quantum feature maps
    Altares-Lopez, Sergio
    Ribeiro, Angela
    Garcia-Ripoll, Juan Jose
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)
  • [5] Asnaashari K, 2023, Arxiv, DOI arXiv:2303.09822
  • [6] Hastings MB, 2014, Arxiv, DOI [arXiv:1403.1539, 10.48550/arXiv.1403.1539]
  • [7] Quantum algorithm for alchemical optimization in material design
    Barkoutsos, Panagiotis Kl
    Gkritsis, Fotios
    Ollitrault, Pauline J.
    Sokolov, Igor O.
    Woerner, Stefan
    Tavernelli, Ivano
    [J]. CHEMICAL SCIENCE, 2021, 12 (12) : 4345 - 4352
  • [8] Quantum Algorithms for Quantum Chemistry and Quantum Materials Science
    Bauer, Bela
    Bravyi, Sergey
    Motta, Mario
    Chan, Garnet Kin-Lic
    [J]. CHEMICAL REVIEWS, 2020, 120 (22) : 12685 - 12717
  • [9] Mean-field dynamics with stochastic decoherence (MF-SD): A new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence
    Bedard-Hearn, MJ
    Larsen, RE
    Schwartz, BJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (23)
  • [10] Bergholm V, 2022, Arxiv, DOI arXiv:1811.04968