Hybrid brain tumor classification of histopathology hyperspectral images by linear unmixing and an ensemble of deep neural networks

被引:1
作者
Cruz-Guerrero, Ines A. [1 ,2 ]
Campos-Delgado, Daniel Ulises [1 ]
Mejia-Rodriguez, Aldo R. [1 ]
Leon, Raquel [3 ]
Ortega, Samuel [3 ]
Fabelo, Himar [3 ]
Camacho, Rafael [4 ]
Plaza, Maria de la Luz [4 ]
Callico, Gustavo [3 ]
机构
[1] Univ Autonoma San Luis Potosi UASLP, Fac Ciencias, Av Chapultepec 1570, San Luis Potosi 78295, Mexico
[2] Univ Colorado, Colorado Sch Publ Hlth, Dept Biostat & Informat, Anschutz Med Campus, Aurora, CO USA
[3] Univ Palmas Las Palmas De Gran Canaria, Inst Appl Microelect IUMA, Las Palmas Gran Canaria, Spain
[4] Univ Hosp Doctor Negrin Gran Canaria, Dept Pathol Anat, Las Palmas Gran Canaria, Spain
关键词
biomedical optical imaging; image classification; learning (artificial intelligence); medical image processing; neural nets; END-MEMBER;
D O I
10.1049/htl2.12084
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Hyperspectral imaging has demonstrated its potential to provide correlated spatial and spectral information of a sample by a non-contact and non-invasive technology. In the medical field, especially in histopathology, HSI has been applied for the classification and identification of diseased tissue and for the characterization of its morphological properties. In this work, we propose a hybrid scheme to classify non-tumor and tumor histological brain samples by hyperspectral imaging. The proposed approach is based on the identification of characteristic components in a hyperspectral image by linear unmixing, as a features engineering step, and the subsequent classification by a deep learning approach. For this last step, an ensemble of deep neural networks is evaluated by a cross-validation scheme on an augmented dataset and a transfer learning scheme. The proposed method can classify histological brain samples with an average accuracy of 88%, and reduced variability, computational cost, and inference times, which presents an advantage over methods in the state-of-the-art. Hence, the work demonstrates the potential of hybrid classification methodologies to achieve robust and reliable results by combining linear unmixing for features extraction and deep learning for classification. In this work, we propose a hybrid scheme to classify non-tumor and tumor histological brain samples by hyperspectral imaging. The proposed approach is based on the identification of characteristic components in a hyperspectral image by linear unmixing, as a features engineering step, and the subsequent classification by a deep learning approach. image
引用
收藏
页码:240 / 251
页数:12
相关论文
共 41 条
[21]   Classification of breast cancer from histopathology images using an ensemble of deep multiscale networks [J].
Karthik, R. ;
Menaka, R. ;
Siddharth, M. V. .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (03) :963-976
[22]   Spectral unmixing [J].
Keshava, N ;
Mustard, JF .
IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (01) :44-57
[23]   Transfer learning techniques for medical image analysis: A review [J].
Kora, Padmavathi ;
Ooi, Chui Ping ;
Faust, Oliver ;
Raghavendra, U. ;
Gudigar, Anjan ;
Chan, Wai Yee ;
Meenakshi, K. ;
Swaraja, K. ;
Plawiak, Pawel ;
Acharya, U. Rajendra .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (01) :79-107
[24]   Segmentation and Classification in Digital Pathology for Glioma Research: Challenges and Deep Learning Approaches [J].
Kurc, Tahsin ;
Bakas, Spyridon ;
Ren, Xuhua ;
Bagari, Aditya ;
Momeni, Alexandre ;
Huang, Yue ;
Zhang, Lichi ;
Kumar, Ashish ;
Thibault, Marc ;
Qi, Qi ;
Wang, Qian ;
Kori, Avinash ;
Gevaert, Olivier ;
Zhang, Yunlong ;
Shen, Dinggang ;
Khened, Mahendra ;
Ding, Xinghao ;
Krishnamurthi, Ganapathy ;
Kalpathy-Cramer, Jayashree ;
Davis, James ;
Zhao, Tianhao ;
Gupta, Rajarsi ;
Saltz, Joel ;
Farahani, Keyvan .
FRONTIERS IN NEUROSCIENCE, 2020, 14
[25]   Deep Learning for Hyperspectral Image Classification: An Overview [J].
Li, Shutao ;
Song, Weiwei ;
Fang, Leyuan ;
Chen, Yushi ;
Ghamisi, Pedram ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09) :6690-6709
[26]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[27]   Efficient quantitative hyperspectral image unmixing method for large-scale Raman micro-spectroscopy data analysis [J].
Lobanova, E. G. ;
Lobanov, S., V .
ANALYTICA CHIMICA ACTA, 2019, 1050 :32-43
[28]   Tumor cell identification and classification in esophageal adenocarcinoma specimens by hyperspectral imaging [J].
Maktabi, Marianne ;
Wichmann, Yannis ;
Koehler, Hannes ;
Ahle, Henning ;
Lorenz, Dietmar ;
Bange, Michael ;
Braun, Susanne ;
Gockel, Ines ;
Chalopin, Claire ;
Thieme, Rene .
SCIENTIFIC REPORTS, 2022, 12 (01)
[29]   Most Relevant Spectral Bands Identification for Brain Cancer Detection Using Hyperspectral Imaging [J].
Martinez, Beatriz ;
Leon, Raquel ;
Fabelo, Himar ;
Ortega, Samuel ;
Pineiro, Juan F. ;
Szolna, Adam ;
Hernandez, Maria ;
Espino, Carlos ;
O'Shanahan, Aruma J. ;
Carrera, David ;
Bisshopp, Sara ;
Sosa, Coralia ;
Marquez, Mariano ;
Camacho, Rafael ;
de la Luz Plaza, Maria ;
Morera, Jesus ;
Callico, Gustavo M. .
SENSORS, 2019, 19 (24)
[30]   Predicting cancer outcomes from histology and genomics using convolutional networks [J].
Mobadersany, Pooya ;
Yousefi, Safoora ;
Amgad, Mohamed ;
Gutman, David A. ;
Barnholtz-Sloan, Jill S. ;
Vega, Jose E. Velazquez ;
Brat, Daniel J. ;
Cooper, Lee A. D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (13) :E2970-E2979