Event-Specific Document Ranking Through Multi-stage Query Expansion Using an Event Knowledge Graph

被引:0
作者
Abdollahi, Sara [1 ]
Kuculo, Tin [1 ]
Gottschalk, Simon [1 ]
机构
[1] Leibniz Univ Hannover, Res Ctr L3S, Hannover, Germany
来源
ADVANCES IN INFORMATION RETRIEVAL, ECIR 2024, PT II | 2024年 / 14609卷
关键词
Document Retrieval; Query Expansion; Event Knowledge Graphs; Event-specific Document Ranking; INFORMATION-RETRIEVAL; PROBABILISTIC MODELS;
D O I
10.1007/978-3-031-56060-6_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Event-specific document ranking is a crucial task in supporting users when searching for texts covering events such as Brexit or the Olympics. However, the complex nature of events involving multiple aspects like temporal information, location, participants and sub-events poses challenges in effectively modelling their representations for ranking. In this paper, we propose MusQuE (Multi-stage Query Expansion), a multi-stage ranking framework that jointly learns to rank query expansion terms and documents, and in this manner flexibly identifies the optimal combination and number of expansion terms extracted from an event knowledge graph. Experimental results show that MusQuE outperforms state-of-the-art baselines on MS-MARCOEVENT, a new dataset for event-specific document ranking, by 9.1% and more.
引用
收藏
页码:333 / 348
页数:16
相关论文
共 52 条
[1]   LaSER: Language-specific event recommendation [J].
Abdollahi, Sara ;
Gottschalk, Simon ;
Demidova, Elena .
JOURNAL OF WEB SEMANTICS, 2023, 75
[2]   PARM: A Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval [J].
Althammer, Sophia ;
Hofsfaetter, Sebastian ;
Sertkan, Mete ;
Verberne, Suzan ;
Hanbury, Allan .
ADVANCES IN INFORMATION RETRIEVAL, PT I, 2022, 13185 :19-34
[3]   Probabilistic models of information retrieval based on measuring the divergence from randomness [J].
Amati, G ;
Van Rijsbergen, CJ .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2002, 20 (04) :357-389
[4]   Query expansion techniques for information retrieval: A survey [J].
Azad, Hiteshwar Kumar ;
Deepak, Akshay .
INFORMATION PROCESSING & MANAGEMENT, 2019, 56 (05) :1698-1735
[5]   A review of ontology based query expansion [J].
Bhogal, J. ;
Macfarlane, A. ;
Smith, P. .
INFORMATION PROCESSING & MANAGEMENT, 2007, 43 (04) :866-886
[6]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[7]  
Cao Guihong, 2008, P 31 ANN INT ACM SIG, P243
[8]   USING PROBABILISTIC MODELS OF DOCUMENT-RETRIEVAL WITHOUT RELEVANCE INFORMATION [J].
CROFT, WB ;
HARPER, DJ .
JOURNAL OF DOCUMENTATION, 1979, 35 (04) :285-295
[9]  
Dahir S., 2021, International Journal of Information Management Data Insights, V1, DOI [10.1016/j.jjimei.2021.100043, DOI 10.1016/J.JJIMEI.2021.100043]
[10]   Entity Query Feature Expansion using Knowledge Base Links [J].
Dalton, Jeffrey ;
Dietz, Laura ;
Allan, James .
SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2014, :365-374