Learning Lyapunov terminal costs from data for complexity reduction in nonlinear model predictive control

被引:0
作者
Abdufattokhov, Shokhjakhon [1 ]
Zanon, Mario [1 ]
Bemporad, Alberto [1 ]
机构
[1] IMT Sch Adv Studies Lucca, Piazza S Francesco,19, I-55100 Lucca, Italy
关键词
constrained systems; data-driven control; neural networks; nonlinear model predictive control; MOVE BLOCKING STRATEGIES; CONTROL SCHEME; IMPLEMENTATION; APPROXIMATION; STABILITY; ALGORITHM; MPC;
D O I
10.1002/rnc.7411
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A classic way to design a nonlinear model predictive control (NMPC) scheme with guaranteed stability is to incorporate a terminal cost and a terminal constraint into the problem formulation. While a long prediction horizon is often desirable to obtain a large domain of attraction and good closed-loop performance, the related computational burden can hinder its real-time deployment. In this article, we propose an NMPC scheme with prediction horizon N=1$$ N=1 $$ and no terminal constraint to drastically decrease the numerical complexity without significantly impacting closed-loop stability and performance. This is attained by constructing a suitable terminal cost from data that estimates the cost-to-go of a given NMPC scheme with long prediction horizon. We demonstrate the advantages of the proposed control scheme in two benchmark control problems.
引用
收藏
页码:8676 / 8691
页数:16
相关论文
共 42 条
  • [1] Learning Convex Terminal Costs for Complexity Reduction in MPC
    Abdufattokhov, Shokhjakon
    Zanon, Mario
    Bemporad, Alberto
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2163 - 2168
  • [2] Aggarwal Charu C, 2018, Springer, V10, P3, DOI [DOI 10.1007/978-3-319-94463-0, 10.1007/978-3-319-94463-0]
  • [3] CasADi: a software framework for nonlinear optimization and optimal control
    Andersson, Joel A. E.
    Gillis, Joris
    Horn, Greg
    Rawlings, James B.
    Diehl, Moritz
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) : 1 - 36
  • [4] Nonlinear Model Predictive Control: an Optimal Search Domain Reduction
    Boggio, Mattia
    Novara, Carlo
    Taragna, Michele
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 6253 - 6258
  • [5] Move blocking strategies in receding horizon control
    Cagienard, R.
    Grieder, P.
    Kerrigan, E. C.
    Morari, M.
    [J]. JOURNAL OF PROCESS CONTROL, 2007, 17 (06) : 563 - 570
  • [6] Complexity reduction of explicit MPC based on fuzzy reshaped polyhedrons for use in industrial controllers
    Changizi, Nematollah
    Salahshoor, Karim
    Siahi, Mehdi
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2023, 54 (03) : 463 - 477
  • [7] A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability
    Chen, H
    Allgower, F
    [J]. AUTOMATICA, 1998, 34 (10) : 1205 - 1217
  • [8] Chen S, 2018, P AMER CONTR CONF, P1520, DOI 10.23919/ACC.2018.8431275
  • [9] Diehl M, 2009, LECT NOTES CONTR INF, V384, P391, DOI 10.1007/978-3-642-01094-1_32
  • [10] Gaby N., LYAPUNOV NET DEEP NE