Adjoint Sensitivities of Chaotic Flows Without Adjoint Solvers: A Data-Driven Approach

被引:2
|
作者
Ozan, Defne Ege [1 ]
Magri, Luca [1 ,2 ,3 ]
机构
[1] Imperial Coll London, Dept Aeronaut, Exhibit Rd, London SW7 2BX, England
[2] Alan Turing Inst, London NW1 2DB, England
[3] Politecn Torino, DIMEAS, Corso Duca degli Abruzzi 24, I-10129 Turin, Italy
来源
COMPUTATIONAL SCIENCE, ICCS 2024, PT V | 2024年 / 14836卷
关键词
Reservoir computing; Adjoint methods; Sensitivity; Chaotic flows; ECHO STATE NETWORKS;
D O I
10.1007/978-3-031-63775-9_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In one calculation, adjoint sensitivity analysis provides the gradient of a quantity of interest with respect to all system's parameters. Conventionally, adjoint solvers need to be implemented by differentiating computational models, which can be a cumbersome task and is code-specific. To propose an adjoint solver that is not code-specific, we develop a data-driven strategy. We demonstrate its application on the computation of gradients of long-time averages of chaotic flows. First, we deploy a parameter-aware echo state network (ESN) to accurately forecast and simulate the dynamics of a dynamical system for a range of system's parameters. Second, we derive the adjoint of the parameter-aware ESN. Finally, we combine the parameter-aware ESN with its adjoint version to compute the sensitivities to the system parameters. We showcase the method on a prototypical chaotic system. Because adjoint sensitivities in chaotic regimes diverge for long integration times, we analyse the application of ensemble adjoint method to the ESN. We find that the adjoint sensitivities obtained from the ESN match closely with the original system. This work opens possibilities for sensitivity analysis without code-specific adjoint solvers.
引用
收藏
页码:345 / 352
页数:8
相关论文
共 50 条
  • [31] Fast EM-Driven Size Reduction of Antenna Structures by Means of Adjoint Sensitivities and Trust Regions
    Koziel, Slawomir
    Bekasiewicz, Adrian
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2015, 14 : 1681 - 1684
  • [32] Analysis on observing optimization for the wind-driven circulation by an adjoint approach
    Dongxiao Wang
    Guoxiong Wu
    Jiang Zhu
    Jian Lan
    Science in China Series D: Earth Sciences, 2000, 43 : 243 - 252
  • [33] Fast EM-Driven Optimization Using Variable-Fidelity EM Models and Adjoint Sensitivities
    Koziel, S.
    Bekasiewicz, A.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2016, 26 (02) : 80 - 82
  • [34] Analysis on observing optimization for the wind-driven circulation by an adjoint approach
    王东晓
    吴国雄
    朱江
    兰健
    ScienceinChina(SeriesD:EarthSciences), 2000, (03) : 243 - 252
  • [35] Analysis on observing optimization for the wind-driven circulation by an adjoint approach
    Wang, DX
    Wu, GX
    Zhu, J
    Lan, J
    SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2000, 43 (03): : 243 - 252
  • [36] A Physics-Informed Data-Driven Approach for Boundary Layer Flows
    Figueredo, Vinicius Silva
    Olichevis Halila, Gustavo Luiz
    Magalhaes, Jose M., Jr.
    de Mendonca, Marcio Teixeira
    AIAA AVIATION FORUM AND ASCEND 2024, 2024,
  • [37] Parallel Approach to Monte Carlo Simulation for Option Price Sensitivities Using the Adjoint and Interval Analysis
    Kozikowski, Grzegorz
    Kubica, Bartlomiej Jacek
    PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2013), PT II, 2014, 8385 : 600 - 612
  • [38] An adaptive mesh adjoint data assimilation method applied to free surface flows
    Fang, F
    Pain, CC
    Piggott, MD
    Gorman, GJ
    Goddard, AJH
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 47 (8-9) : 995 - 1001
  • [39] An aeroelastic coupled adjoint approach for multi-point designs in viscous flows
    Abu-Zurayk, Mohammad
    DLR Deutsches Zentrum fur Luft- und Raumfahrt e.V. - Forschungsberichte, 2017, 2017-January (10): : 1 - 97
  • [40] Continuous adjoint approach to the Spalart-Allmaras turbulence model for incompressible flows
    Zymaris, A. S.
    Papadimitriou, D. I.
    Giannakoglou, K. C.
    Othmer, C.
    COMPUTERS & FLUIDS, 2009, 38 (08) : 1528 - 1538