Point-Cloud Transformer for 3-D Electrical Impedance Tomography

被引:2
作者
Chen, Zhou [1 ]
Zhang, Haijing [2 ]
Hu, Delin [2 ]
Tan, Chao [3 ]
Liu, Zhe [2 ]
Yang, Yunjie [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200030, Peoples R China
[2] Univ Edinburgh, Inst Imaging Data & Commun, Sch Engn, Edinburgh EH9 3FG, Scotland
[3] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300384, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Deep learning; inverse problem; point cloud; three-dimensional (3-D) electrical impedance tomography (EIT); transformer; ALGORITHM;
D O I
10.1109/TIM.2024.3413161
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrical impedance tomography (EIT) is an emerging medical imaging modality that offers nonintrusive, label-free, fast, and portable features. However, the three-dimensional (3-D) EIT image reconstruction problem is thwarted by its high dimensionality and nonlinearity, thus suffering from low image quality. This article proposes a novel algorithm named point-cloud transformer for 3-D EIT image reconstruction (ptEIT) to tackle the challenges of 3-D EIT image reconstruction. ptEIT leverages the nonlinear representation ability of deep learning and effectively addresses the computational cost issue by using irregular-grid representation of the 3-D conductivity distribution in point clouds. The permutation invariant property rooted in the self-attention operator makes ptEIT particularly suitable for processing this type of data, and the objectwise chamfer distance (OWCD) effectively solves the mean-shaped behavior problem encountered in reconstructing multiple objects. Our experimental results demonstrate that ptEIT can simultaneously achieve high accuracy, spatial resolution, and visual quality, outperforming the state-of-the-art 3-D EIT image reconstruction approaches. ptEIT also offers the unique feature of variable resolution and demonstrates strong generalization ability toward different noise levels, showing evident superiority over voxel-based 3-D EIT approaches.
引用
收藏
页数:9
相关论文
共 35 条
[1]   Whither lung EIT: Where are we, where do we want to go and what do we need to get there? [J].
Adler, Andy ;
Amato, Marcelo B. ;
Arnold, John H. ;
Bayford, Richard ;
Bodenstein, Marc ;
Boehm, Stephan H. ;
Brown, Brian H. ;
Frerichs, Inez ;
Stenqvist, Ola ;
Weiler, Norbert ;
Wolf, Gerhard K. .
PHYSIOLOGICAL MEASUREMENT, 2012, 33 (05) :679-694
[2]   GREIT: a unified approach to 2D linear EIT reconstruction of lung images [J].
Adler, Andy ;
Arnold, John H. ;
Bayford, Richard ;
Borsic, Andrea ;
Brown, Brian ;
Dixon, Paul ;
Faes, Theo J. C. ;
Frerichs, Inez ;
Gagnon, Herve ;
Gaerber, Yvo ;
Grychtol, Bartlomiej ;
Hahn, Guenter ;
Lionheart, William R. B. ;
Malik, Anjum ;
Patterson, Robert P. ;
Stocks, Janet ;
Tizzard, Andrew ;
Weiler, Norbert ;
Wolf, Gerhard K. .
PHYSIOLOGICAL MEASUREMENT, 2009, 30 (06) :S35-S55
[3]  
Andoni A, 2008, PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P343
[4]   Deep Machine Learning-A New Frontier in Artificial Intelligence Research [J].
Arel, Itamar ;
Rose, Derek C. ;
Karnowski, Thomas P. .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2010, 5 (04) :13-18
[5]   Bioimpedance tomography (Electrical impedance tomography) [J].
Bayford, R. H. .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2006, 8 :63-91
[6]   Direct numerical reconstruction of conductivities in three dimensions using scattering transforms [J].
Bikowski, Jutta ;
Knudsen, Kim ;
Mueller, Jennifer L. .
INVERSE PROBLEMS, 2011, 27 (01)
[7]   Optimum design of chamfer distance transforms [J].
Butt, MA ;
Maragos, P .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (10) :1477-1484
[8]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[9]   Electrical Impedance Tomography Technical Contributions for Detection and 3D Geometric Localization of Breast Tumors: A Systematic Review [J].
Carlos Gomez-Cortes, Juan ;
Javier Diaz-Carmona, Jose ;
Alfredo Padilla-Medina, Jose ;
Espinosa Calderon, Alejandro ;
Barranco Gutierrez, Alejandro Israel ;
Gutierrez-Lopez, Marcos ;
Prado-Olivarez, Juan .
MICROMACHINES, 2022, 13 (04)
[10]  
Chen Z., 2023, "Machine learning aided bioimpedance tomography for tis-sue engineering