Beyond dynamics: learning to discover conservation principles

被引:1
作者
Belyshev, Antonii [1 ]
Kovrigin, Alexander [1 ]
Ustyuzhanin, Andrey [1 ,2 ]
机构
[1] Constructor Univ, D-28759 Bremen, Germany
[2] Natl Univ Singapore, Inst Funct Intelligent Mat, Singapore 117544, Singapore
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2024年 / 5卷 / 02期
基金
新加坡国家研究基金会;
关键词
manifold learning; machine learning; physics; data science;
D O I
10.1088/2632-2153/ad4a20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The discovery of conservation principles is crucial for understanding the fundamental behavior of both classical and quantum physical systems across numerous domains. This paper introduces an innovative method that merges representation learning and topological analysis to explore the topology of conservation law spaces. Notably, the robustness of our approach to noise makes it suitable for complex experimental setups and its aptitude extends to the analysis of quantum systems, as successfully demonstrated in our paper. We exemplify our method's potential to unearth previously unknown conservation principles and endorse interdisciplinary research through a variety of physical simulations. In conclusion, this work emphasizes the significance of data-driven techniques in deepening our comprehension of the principles governing classical and quantum physical systems.
引用
收藏
页数:12
相关论文
共 27 条
  • [1] Nonlinear effects on Turing patterns: Time oscillations and chaos
    Aragon, J. L.
    Barrio, R. A.
    Woolley, T. E.
    Baker, R. E.
    Maini, P. K.
    [J]. PHYSICAL REVIEW E, 2012, 86 (02):
  • [2] Arora S, 2023, Arxiv, DOI arXiv:2301.07503
  • [3] A two-dimensional numerical study of spatial pattern formation in interacting Turing systems
    Barrio, RA
    Varea, C
    Aragón, JL
    Maini, PK
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 1999, 61 (03) : 483 - 505
  • [4] Data-driven discovery of coordinates and governing equations
    Champion, Kathleen
    Lusch, Bethany
    Kutz, J. Nathan
    Brunton, Steven L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (45) : 22445 - 22451
  • [5] SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS
    CHANNELL, PJ
    SCOVEL, C
    [J]. NONLINEARITY, 1990, 3 (02) : 231 - 259
  • [6] Cranmer M., 2020, ADV NEURAL INFORM PR, V33, P17429, DOI DOI 10.48550/ARXIV.2006.11287
  • [7] Cranmer M, 2020, Arxiv, DOI arXiv:2003.04630
  • [8] On the rate of convergence in Wasserstein distance of the empirical measure
    Fournier, Nicolas
    Guillin, Arnaud
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2015, 162 (3-4) : 707 - 738
  • [9] Deep learning models for global coordinate transformations that linearise PDEs
    Gin, Craig
    Lusch, Bethany
    Brunton, Steven L.
    Kutz, J. Nathan
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (03) : 515 - 539
  • [10] Greydanus Samuel, 2019, Advances in Neural Information Processing Systems