LONG-TIME EXISTENCE OF GEVREY-2 SOLUTIONS TO THE 3D PRANDTL BOUNDARY LAYER EQUATIONS

被引:0
作者
Pan, Xinghong [1 ,2 ]
Xu, Chao-jiang [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Key Lab MIIT, Nanjing 211106, Peoples R China
关键词
Long-time existence; tangentially Gevrey-2 solutions; Prandtl equations; WELL-POSEDNESS; ILL-POSEDNESS; ANALYTIC SOLUTIONS; GLOBAL EXISTENCE; INSTABILITY; SYSTEM; EULER;
D O I
10.4310/CMS.2024.v22.n5.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the three dimensional Prandtl boundary layer equations, we will show that for arbitrary M and sufficiently small & varepsilon;, the lifespan of the Gevrey-2 solution is at least of size & varepsilon;(-M) if the initial data lies in suitable Gevrey-2 spaces with size of & varepsilon;.
引用
收藏
页码:1203 / 1250
页数:48
相关论文
共 32 条
[21]  
Moore F.K., 1956, ADV APPL MECH, V4, P1
[22]  
Oleinik O.A., 1999, MATH MODELS BOUNDARY, V15, P1
[23]   Global Existence and the Decay of Solutions to the Prandtl System with Small Analytic Data [J].
Paicu, Marius ;
Zhang, Ping .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 241 (01) :403-446
[24]  
Pan X., CHINESE ANN MATH B, V1
[25]  
Prandtl L., 1904, P 3 INT MATH C HEID, P484, DOI DOI 10.1007/978-3-662-11836-8_43
[26]   Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations [J].
Sammartino, M ;
Caflisch, RE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (02) :433-461
[27]   Boundary layer separation and local behavior for the Steady Prandtl equation [J].
Shen, Weiming ;
Wang, Yue ;
Zhang, Zhifei .
ADVANCES IN MATHEMATICS, 2021, 389
[28]   On the global small solution of 2-D Prandtl system with initial data in the optimal Gevrey class [J].
Wang, Chao ;
Wang, Yuxi ;
Zhang, Ping .
ADVANCES IN MATHEMATICS, 2024, 440
[29]  
Weinan E, 1997, COMMUN PUR APPL MATH, V50, P1287
[30]   On the global existence of solutions to the Prandtl's system [J].
Xin, ZP ;
Zhang, LQ .
ADVANCES IN MATHEMATICS, 2004, 181 (01) :88-133