A New Parallel Frequency-Domain Finite-Difference Algorithm Using Multi-GPU

被引:0
|
作者
Wang, Yijing [1 ]
He, Xinbo [1 ]
Wei, Bin [1 ]
机构
[1] Xidian Univ, Sch Phys, Xian 710071, Peoples R China
来源
IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS | 2024年 / 34卷 / 08期
基金
中国国家自然科学基金;
关键词
Graphics processing units; Sparse matrices; Computational efficiency; Finite difference methods; Matrix decomposition; Instruction sets; Mathematical models; Electromagnetic scattering; frequency-domain finite-difference (FDFD); graphic processing unit (GPU); multi-GPU; parallel algorithm; CONJUGATE GRADIENTS; ACCELERATION; FDTD;
D O I
10.1109/LMWT.2024.3414598
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a parallel frequency-domain finite-difference (FDFD) algorithm based on multi-graphic processing unit (GPU) applied to electromagnetic scattering computations to enhance the computational efficiency of the algorithm. The proposed algorithm parallelizes the solution of large-scale sparse matrices, distributing threads to the matrix-vector and vector-vector multiplication operations within decomposed sub-matrices to reduce the computational time. Moreover, we configure the OpenMP to optimize communication transfer between multiple GPUs, thereby improving computational efficiency. The simulation results show that compared with the conventional FDFD method, the proposed algorithm can enhance computational efficiency while ensuring accuracy.
引用
收藏
页码:971 / 974
页数:4
相关论文
共 50 条
  • [1] PARALLEL 3D FINITE-DIFFERENCE TIME-DOMAIN METHOD ON MULTI-GPU SYSTEMS
    Du, Liu-Ge
    Li, Kang
    Kong, Fan-Min
    Hu, Yuan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2011, 22 (02): : 107 - 121
  • [2] An Algorithm for Efficient Solution of Finite-Difference Frequency-Domain (FDFD) Methods
    Demir, Veysel
    Alkan, Erdogan
    Elsherbeni, Atef Z.
    Arvas, Ercument
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2009, 51 (06) : 143 - 150
  • [3] Frequency-Domain Finite-Difference Modeling of Acoustic Waves Using Compressive Sensing Solvers
    Guan, Shanshan
    Zhong, Weiyi
    Du, Bingxuan
    Rao, Jing
    Jensen, Kristian
    Huang, Xingguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Dual-Grid Finite-Difference Frequency-Domain Method for Modeling Chiral Medium
    Alkan, Erdogan
    Demir, Veysel
    Elsherbeni, Atef Z.
    Arvas, Ercument
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (03) : 817 - 823
  • [5] A Multi-GPU Accelerated Parallel Domain Decomposition One-Step Leapfrog ADI-FDTD
    Liu, Shuo
    Zou, Bin
    Zhang, Lamei
    Ren, Shulei
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2020, 19 (05): : 816 - 820
  • [6] Finite-difference frequency-domain method for the extraction of effective parameters of metamaterials
    Costa, Joao T.
    Silveirinha, Mario G.
    Maslovski, Stanislav I.
    PHYSICAL REVIEW B, 2009, 80 (23)
  • [8] Eigenvalue Analysis of Curved Waveguides Employing an Orthogonal Curvilinear Frequency-Domain Finite-Difference Method
    Lavranos, Christos S.
    Kyriacou, George A.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2009, 57 (03) : 594 - 611
  • [9] Electromagnetic Scattering from Chiral Objects Using Double-Grid Finite-Difference Frequency-Domain (DG-FDFD) Method
    Alkan, Erdogan
    Demir, Veysel
    Elsherbeni, Atef Z.
    Arvas, Ercument
    2009 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, VOLS 1-3, 2009, : 173 - +
  • [10] Accurate Iterative Inverse Scattering Methods Based on Finite-Difference Frequency-Domain Inversion
    Wei, Teng-Fei
    Wang, Xiao-Hua
    Ding, Ping-Ping
    Wang, Bing-Zhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60