Advances in the Model Structure of In Vitro Vascularized Organ-on-a-Chip

被引:4
作者
Yin, Hongze [1 ]
Wang, Yue [2 ]
Liu, Na [1 ,3 ]
Zhong, Songyi [1 ,3 ]
Li, Long [1 ,2 ]
Zhang, Quan [1 ,2 ,3 ]
Liu, Zeyang [5 ]
Yue, Tao [1 ,2 ,3 ,4 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Sch Future Technol, Shanghai, Peoples R China
[3] Shanghai Univ, Shanghai Key Lab Intelligent Mfg & Robot, Shanghai 200444, Peoples R China
[4] Tongji Univ, Shanghai Inst Intelligent Sci & Technol, Shanghai, Peoples R China
[5] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
来源
CYBORG AND BIONIC SYSTEMS | 2024年 / 5卷
基金
中国国家自然科学基金;
关键词
BLOOD-BRAIN-BARRIER; BREAST-CANCER; MICROFLUIDIC PLATFORM; GROWTH-FACTOR; DRUG; VASCULATURE; HEART; GENERATION; VESSELS; INJURY;
D O I
10.34133/cbsystems.0107
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Microvasculature plays a crucial role in human physiology and is closely related to various human diseases. Building in vitro vascular networks is essential for studying vascular tissue behavior with repeatable morphology and signaling conditions. Engineered 3D microvascular network models, developed through advanced microfluidic-based techniques, provide accurate and reproducible platforms for studying the microvasculature in vitro, an essential component for designing organ-on-chips to achieve greater biological relevance. By optimizing the microstructure of microfluidic devices to closely mimic the in vivo microenvironment, organ-specific models with healthy and pathological microvascular tissues can be created. This review summarizes recent advancements in in vitro strategies for constructing microvascular tissue and microfluidic devices. It discusses the static vascularization chips' classification, structural characteristics, and the various techniques used to build them: growing blood vessels on chips can be either static or dynamic, and in vitro blood vessels can be grown in microchannels, elastic membranes, and hydrogels. Finally, the paper discusses the application scenarios and key technical issues of existing vascularization chips. It also explores the potential for a novel organoid chip vascularization approach that combines organoids and organ chips to generate better vascularization chips.
引用
收藏
页数:23
相关论文
共 193 条
[1]   Engineered Vasculature for Organ-on-a-Chip Systems [J].
Aazmi, Abdellah ;
Zhou, Hongzhao ;
Li, Yuting ;
Yu, Mengfei ;
Xu, Xiaobin ;
Wu, Yutong ;
Ma, Liang ;
Zhang, Bin ;
Yang, Huayong .
ENGINEERING, 2022, 9 :131-147
[2]   A modular approach to create a neurovascular unit-on-a-chip [J].
Achyuta, Anil Kumar H. ;
Conway, Amy J. ;
Crouse, Richard B. ;
Bannister, Emilee C. ;
Lee, Robin N. ;
Katnik, Christopher P. ;
Behensky, Adam A. ;
Cuevas, Javier ;
Sundaram, Shivshankar S. .
LAB ON A CHIP, 2013, 13 (04) :542-553
[3]   Classical and Non-classical Fibrosis Phenotypes Are Revealed by Lung and Cardiac Like Microvascular Tissues On-Chip [J].
Akinbote, Akinola ;
Beltran-Sastre, Violeta ;
Cherubini, Marta ;
Visone, Roberta ;
Hajal, Cynthia ;
Cobanoglu, Defne ;
Haase, Kristina .
FRONTIERS IN PHYSIOLOGY, 2021, 12
[4]   An Electrical Stimulation Culture System for Daily Maintenance-Free Muscle Tissue Production [J].
Akiyama, Yoshitake ;
Nakayama, Akemi ;
Nakano, Shota ;
Amiya, Ryuichiro ;
Hirose, Jun .
CYBORG AND BIONIC SYSTEMS, 2021, 2021
[5]   Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease [J].
Amirifar, Leyla ;
Shamloo, Amir ;
Nasiri, Rohollah ;
de Barros, Natan Roberto ;
Wang, Ze Zhong ;
Unluturk, Bige Deniz ;
Libanori, Alberto ;
Ievglevskyi, Oleksandr ;
Diltemiz, Sibel Emir ;
Sances, Samuel ;
Balasingham, Ilangko ;
Seidlits, Stephanie K. ;
Ashammakhi, Nureddin .
BIOMATERIALS, 2022, 285
[6]   Three-dimensional bioprinting of in vitro tumor organoid and organ-on-a-chip models [J].
Anderson, Sydney R. ;
Stagner, Emerie J. ;
Sivakumar, Hemamylammal ;
Skardal, Aleksander .
MRS BULLETIN, 2023, 48 (06) :643-656
[7]   Human Spinal Organoid-on-a-Chip to Model Nociceptive Circuitry for Pain Therapeutics Discovery [J].
Ao, Zheng ;
Cai, Hongwei ;
Wu, Zhuhao ;
Krzesniak, Jonathan ;
Tian, Chunhui ;
Lai, Yvonne Y. ;
Mackie, Ken ;
Guo, Feng .
ANALYTICAL CHEMISTRY, 2022, 94 (02) :1365-1372
[8]   Vascularized hiPSC-derived 3D cardiac microtissue on chip [J].
Arslan, Ulgu ;
Brescia, Marcella ;
Meraviglia, Viviana ;
Nahon, Dennis M. ;
van Helden, Ruben W. J. ;
Stein, Jeroen M. ;
van den Hil, Francijna E. ;
van Meer, Berend J. ;
Cuenca, Marc Vila ;
Mummery, Christine L. ;
Orlova, Valeria V. .
STEM CELL REPORTS, 2023, 18 (07) :1394-1404
[9]   Breast cancer models: Engineering the tumor microenvironment [J].
Bahcecioglu, Gokhan ;
Basara, Gozde ;
Ellis, Bradley W. ;
Ren, Xiang ;
Zorlutuna, Pinar .
ACTA BIOMATERIALIA, 2020, 106 :1-21
[10]   Functional Electrical Stimulation of Peroneal Muscles on Balance in Healthy Females [J].
Bamber, Zoe A. ;
Sun, Wei ;
Menon, Rhea S. ;
Wheeler, Patrick C. ;
Swain, Ian D. ;
Fong, Daniel T. P. .
CYBORG AND BIONIC SYSTEMS, 2021, 2021