Satellite video single object tracking: A systematic review and an oriented object tracking benchmark

被引:30
作者
Chen, Yuzeng [1 ]
Tang, Yuqi [2 ]
Xiao, Yi [1 ]
Yuan, Qiangqiang [1 ,3 ]
Zhang, Yuwei [2 ]
Liu, Fengqing [2 ]
He, Jiang [1 ]
Zhang, Liangpei [4 ]
机构
[1] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Hubei, Peoples R China
[2] Cent South Univ, Sch Geosci & Info Phys, Changsha, Peoples R China
[3] Hubei Luojia Lab, Wuhan 430079, Hubei, Peoples R China
[4] Wuhan Univ, State Key Lab Informat Engn Survey Mapping & Remot, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Satellite video; Deep learning; Correlation filter; Single object tracking; Benchmark; CORRELATION FILTER TRACKER; NETWORKS; MODELS;
D O I
10.1016/j.isprsjprs.2024.03.013
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Single object tracking (SOT) in satellite video (SV) enables the continuous acquisition of position and range information of an arbitrary object, showing promising value in remote sensing applications. However, existing trackers and datasets rarely focus on the SOT of oriented objects in SV. To bridge this gap, this article presents a comprehensive review of various tracking paradigms and frameworks covering both the general video and satellite video domains and subsequently proposes the oriented object tracking benchmark (OOTB) to advance the field of visual tracking. OOTB contains 29,890 frames from 110 video sequences, covering common satellite video object categories including car, ship, plane, and train. All frames are manually annotated with oriented bounding boxes, and each sequence is labeled with 12 fine-grained attributes. Additionally, a high-precision evaluation protocol is proposed for comprehensive and fair comparisons of trackers. To validate the existing trackers and explore frameworks suitable for SV tracking, we benchmark 33 state-of-the-art trackers totaling 58 models with different features, backbones, and tracker tags. Finally, extensive experiments and insightful thoughts are also provided to help understand their performance and offer baseline results for future research. OOTB is available at https://github.com/YZCU/OOTB.
引用
收藏
页码:212 / 240
页数:29
相关论文
共 172 条
[1]   Projections of ipRGCs and conventional RGCs to retinorecipient brain nuclei [J].
Beier, Corinne ;
Zhang, Ze ;
Yurgel, Maria ;
Hattar, Samer .
JOURNAL OF COMPARATIVE NEUROLOGY, 2021, 529 (08) :1863-1875
[2]   Staple: Complementary Learners for Real-Time Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Golodetz, Stuart ;
Miksik, Ondrej ;
Torr, Philip H. S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1401-1409
[3]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[4]   Know Your Surroundings: Exploiting Scene Information for Object Tracking [J].
Bhat, Goutam ;
Danelljan, Martin ;
Van Gool, Luc ;
Timofte, Radu .
COMPUTER VISION - ECCV 2020, PT XXIII, 2020, 12368 :205-221
[5]   Learning Discriminative Model Prediction for Tracking [J].
Bhat, Goutam ;
Danelljan, Martin ;
Van Gool, Luc ;
Timofte, Radu .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6181-6190
[6]   Remote sensing target tracking in satellite videos based on a variable-angle-adaptive Siamese network [J].
Bi, Fukun ;
Sun, Jiayi ;
Han, Jianhong ;
Wang, Yanping ;
Bian, Mingming .
IET IMAGE PROCESSING, 2021, 15 (09) :1987-1997
[7]  
Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
[8]   The devil is in the details: an evaluation of recent feature encoding methods [J].
Chatfield, Ken ;
Lempitsky, Victor ;
Vedaldi, Andrea ;
Zisserman, Andrew .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
[9]   Backbone is All Your Need: A Simplified Architecture for Visual Object Tracking [J].
Chen, Boyu ;
Li, Peixia ;
Bai, Lei ;
Qiao, Lei ;
Shen, Qiuhong ;
Li, Bo ;
Gan, Weihao ;
Wu, Wei ;
Ouyang, Wanli .
COMPUTER VISION, ECCV 2022, PT XXII, 2022, 13682 :375-392
[10]   Multi attention module for visual tracking [J].
Chen, Boyu ;
Li, Peixia ;
Sun, Chong ;
Wang, Dong ;
Yang, Gang ;
Lu, Huchuan .
PATTERN RECOGNITION, 2019, 87 :80-93