Artificial intelligence in surgery

被引:67
作者
Varghese, Chris [1 ]
Harrison, Ewen M. [2 ]
O'Grady, Greg [1 ,3 ]
Topol, Eric J. [4 ]
机构
[1] Univ Auckland, Dept Surg, Auckland, New Zealand
[2] Univ Edinburgh, Usher Inst, Med Informat Ctr, Edinburgh, Midlothian, Scotland
[3] Univ Auckland, Auckland Bioengn Inst, Auckland, New Zealand
[4] Scripps Res Translat Inst, La Jolla, CA 92037 USA
基金
美国国家卫生研究院;
关键词
REPORTING GUIDELINES; NEURAL-NETWORKS; SURGICAL SKILL; HEALTH; INTERVENTIONS; SYSTEM; TRIAL; RISK; TIME;
D O I
10.1038/s41591-024-02970-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Artificial intelligence (AI) is rapidly emerging in healthcare, yet applications in surgery remain relatively nascent. Here we review the integration of AI in the field of surgery, centering our discussion on multifaceted improvements in surgical care in the preoperative, intraoperative and postoperative space. The emergence of foundation model architectures, wearable technologies and improving surgical data infrastructures is enabling rapid advances in AI interventions and utility. We discuss how maturing AI methods hold the potential to improve patient outcomes, facilitate surgical education and optimize surgical care. We review the current applications of deep learning approaches and outline a vision for future advances through multimodal foundation models.
引用
收藏
页码:1257 / 1268
页数:12
相关论文
共 167 条
[1]   The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review [J].
Aerts, Hugo J. W. L. .
JAMA ONCOLOGY, 2016, 2 (12) :1636-1642
[2]   The role of non-technical skills in surgery [J].
Agha, Riaz A. ;
Fowler, Alexander J. ;
Sevdalis, Nick .
ANNALS OF MEDICINE AND SURGERY, 2015, 4 (04) :422-427
[3]   The Operating Room Black Box: Understanding Adherence to Surgical Checklists [J].
Al Abbas, Amr, I ;
Sankaranarayanan, Ganesh ;
Polanco, Patricio M. ;
Cadeddu, Jeffrey A. ;
Daniel, William ;
Palter, Vanessa ;
Grantcharov, Teodor ;
Bartolome, Sonja ;
Dandekar, Priya ;
Evans, Kim ;
Zeh, Herbert J., III .
ANNALS OF SURGERY, 2022, 276 (06) :995-1001
[4]   Bridging the literacy gap for surgical consents: an AI-human expert collaborative approach [J].
Ali, Rohaid ;
Connolly, Ian D. ;
Tang, Oliver Y. ;
Mirza, Fatima N. ;
Johnston, Benjamin ;
Abdulrazeq, Hael F. ;
Galamaga, Paul F. ;
Libby, Tiffany J. ;
Sodha, Neel R. ;
Groff, Michael W. ;
Gokaslan, Ziya L. ;
Telfeian, Albert E. ;
Shin, John H. ;
Asaad, Wael F. ;
Zou, James ;
Doberstein, Curtis E. .
NPJ DIGITAL MEDICINE, 2024, 7 (01)
[5]   Global access to surgical care: a modelling study [J].
Alkire, Blake C. ;
Raykar, Nakul P. ;
Shrime, Mark G. ;
Weiser, Thomas G. ;
Bickler, Stephen W. ;
Rose, John A. ;
Nutt, Cameron T. ;
Greenberg, Sarah L. M. ;
Kotagal, Meera ;
Riesel, Johanna N. ;
Esquivel, Micaela ;
Uribe-Leitz, Tarsicio ;
Molina, George ;
Roy, Nobhojit ;
Meara, John G. ;
Farmer, Paul E. .
LANCET GLOBAL HEALTH, 2015, 3 (06) :E316-E323
[6]  
[Anonymous], 2024, A clinical trial of the use of remote heart rhythm monitoring with a smartphone after cardiac surgery (SURGICAL-AF 2) ClinicalTrials.gov
[7]  
[Anonymous], 2023, How assistants work
[8]  
[Anonymous], 2024, ClinicalTrials.gov
[9]  
[Anonymous], 2023, Introducing GPTs
[10]   Modular stimuli-responsive hydrogel sealants for early gastrointestinal leak detection and containment [J].
Anthis, Alexandre H. C. ;
Abundo, Maria Paulene ;
Neuer, Anna L. ;
Tsolaki, Elena ;
Rosendorf, Jachym ;
Rduch, Thomas ;
Starsich, Fabian H. L. ;
Weisse, Bernhard ;
Liska, Vaclav ;
Schlegel, Andrea A. ;
Shapiro, Mikhail G. ;
Herrmann, Inge K. .
NATURE COMMUNICATIONS, 2022, 13 (01)