Stein-Weiss inequalities on local Morrey spaces with variable exponents

被引:2
作者
Ho, Kwok-Pun [1 ]
机构
[1] Educ Univ Hong Kong, Dept Math & Informat Technol, Tai Po, 10 Lo Ping Rd, Hong Kong, Peoples R China
关键词
SINGULAR INTEGRAL-OPERATORS; WEIGHT NORM INEQUALITIES; SUFFICIENT CONDITIONS; FRACTIONAL INTEGRALS; MAXIMAL OPERATOR; 2-WEIGHT NORM; BOUNDEDNESS; SOBOLEV;
D O I
10.1215/00192082-11285728
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes the Stein-Weiss inequalities on local Morrey spaces with variable exponents. It is presented as the boundedness of the fractional integral operators on power -weighted local Morrey spaces with variable exponents with different power weights. As a consequence of the main result, we obtain some Poincar & eacute; inequalities for local Morrey spaces with variable exponents.
引用
收藏
页码:399 / 413
页数:15
相关论文
共 36 条
[1]  
[Anonymous], 1999, Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some Applications
[2]   Necessary and Sufficient Conditions for the Boundedness of Genuine Singular Integral Operators in Local Morrey-Type Spaces [J].
Burenkov, V. I. ;
Guliev, V. S. ;
Tararykova, T. V. ;
Serbetci, A. .
DOKLADY MATHEMATICS, 2008, 78 (02) :651-654
[3]   Boundedness of the fractional maximal operator in local Morrey-type spaces [J].
Burenkov, V. I. ;
Gogatishvili, A. ;
Guliyev, V. S. ;
Mustafayev, R. Ch. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) :739-758
[4]   Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces [J].
Burenkov, VI ;
Guliyev, HV .
STUDIA MATHEMATICA, 2004, 163 (02) :157-176
[5]   Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces [J].
Burenkov, Victor I. ;
Guliyev, Vagif S. .
POTENTIAL ANALYSIS, 2009, 30 (03) :211-249
[6]   Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces [J].
Burenkov, Viktor I. ;
Guliyev, Huseyn V. ;
Guliyev, Vagif S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 208 (01) :280-301
[7]   Hardy-Leray inequalities in variable Lebesgue spaces ☆ [J].
Cruz-Uribe, David ;
Suragan, Durvudkhan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (02)
[8]  
Cruz-Uribe D, 2013, ILLINOIS J MATH, V57, P295
[9]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[10]   ON WEIGHTED INEQUALITIES FOR FRACTIONAL INTEGRALS OF RADIAL FUNCTIONS [J].
De Napoli, Pablo L. ;
Drelichman, Irene ;
Duran, Ricardo G. .
ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (02) :575-587