Insights into the Machine Learning Predictions of the Optical Response of Plasmon@Semiconductor Core-Shell Nanocylinders

被引:3
作者
Vahidzadeh, Ehsan [1 ]
Shankar, Karthik [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, 9211-116 St, Edmonton, AB T6G 1H9, Canada
来源
PHOTOCHEM | 2023年 / 3卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
energy; sensing; photocatalysis; in-silico design; classification; optimization; light-matter interactions; Maxwells equations; optical characterization; plasmonic hot carrier devices; INVERSE-DESIGN; DEEP; NANOPARTICLES;
D O I
10.3390/photochem3010010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The application domain of deep learning (DL) has been extended into the realm of nanomaterials, photochemistry, and optoelectronics research. Here, we used the combination of a computer vision technique, namely convolutional neural network (CNN), with multilayer perceptron (MLP) to obtain the far-field optical response at normal incidence (along cylinder axis) of concentric cylindrical plasmonic metastructures such as nanorods and nanotubes. Nanotubes of Si, Ge, and TiO2 coated on either their inner wall or both their inner and outer walls with a plasmonic noble metal (Au or Ag) were thus modeled. A combination of a CNN and MLP was designed to accept the cross-sectional images of cylindrical plasmonic core-shell nanomaterials as input and rapidly generate their optical response. In addition, we addressed an issue related to DL methods, namely explainability. We probed deeper into these networks' architecture to explain how the optimized network could predict the final results. Our results suggest that the DL network learns the underlying physics governing the optical response of plasmonic core-shell nanocylinders, which in turn builds trust in the use of DL methods in materials science and optoelectronics.
引用
收藏
页码:155 / 170
页数:16
相关论文
共 63 条
[31]  
Lundberg SM, 2017, ADV NEUR IN, V30
[32]   From local explanations to global understanding with explainable AI for trees [J].
Lundberg, Scott M. ;
Erion, Gabriel ;
Chen, Hugh ;
DeGrave, Alex ;
Prutkin, Jordan M. ;
Nair, Bala ;
Katz, Ronit ;
Himmelfarb, Jonathan ;
Bansal, Nisha ;
Lee, Su-In .
NATURE MACHINE INTELLIGENCE, 2020, 2 (01) :56-67
[33]   Deep-learning-enabled inverse engineering of multi-wavelength invisibility-to-superscattering switching with phase-change materials [J].
Luo, Jie ;
Li, Xun ;
Zhang, Xinyuan ;
Guo, Jiajie ;
Liu, Wei ;
Lai, Yun ;
Zhan, Yaohui ;
Huang, Min .
OPTICS EXPRESS, 2021, 29 (07) :10527-10537
[34]   Plasmonic photocatalysis and SERS sensing using ellipsometrically modeled Ag nanoisland substrates [J].
Manuel, Ajay P. ;
Barya, Priyash ;
Riddell, Saralyn ;
Zeng, Sheng ;
Alam, Kazi M. ;
Shankar, Karthik .
NANOTECHNOLOGY, 2020, 31 (36)
[35]   Plexcitonics - fundamental principles and optoelectronic applications [J].
Manuel, Ajay P. ;
Kirkey, Aaron ;
Mahdi, Najia ;
Shankar, Karthik .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (07) :1821-1853
[36]   Comparative Analysis of Optical Spectra of Plasmonic Nanoparticles of Different Geometrical Shapes [J].
Mekshun, A. V. ;
Moritaka, S. S. ;
Kondorskii, A. D. ;
Lebedev, V. S. .
BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2020, 47 (09) :276-279
[37]   Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review [J].
Ogawa, Shinpei ;
Kimata, Masafumi .
MATERIALS, 2018, 11 (03)
[38]   Hyperbolic dispersion metamaterials and metasurfaces [J].
Palermo, Giovanna ;
Sreekanth, Kandammathe Valiyaveedu ;
Strangi, Giuseppe .
EPJ APPLIED METAMATERIALS, 2021, 7
[39]   The pure and representative types of disordered platinum nanoparticles from machine learning [J].
Parker, Amanda J. ;
Motevalli, Benyamin ;
Opletal, George ;
Barnard, Amanda S. .
NANOTECHNOLOGY, 2021, 32 (09)
[40]   Nanophotonic particle simulation and inverse design using artificial neural networks [J].
Peurifoy, John ;
Shen, Yichen ;
Jing, Li ;
Yang, Yi ;
Cano-Renteria, Fidel ;
DeLacy, Brendan G. ;
Joannopoulos, John D. ;
Tegmark, Max ;
Soljacic, Marin .
SCIENCE ADVANCES, 2018, 4 (06)