Improved CMAS corrosion resistance of rare earth niobates by high-entropy and composite design

被引:0
作者
Tian, Liujia [1 ,2 ]
Huang, Yiling [1 ]
Song, Xuemei [1 ]
Peng, Fan [1 ]
Zheng, Wei [1 ]
Liu, Ziwei [1 ]
Zeng, Yi [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2024年 / 31卷
关键词
Thermal barrier coatings (TBCs); High entropy; Rare-earth niobate ceramics; Composite; CMAS corrosion; THERMAL-BARRIER COATINGS; OPTICAL BASICITY; DEGRADATION; CERAMICS; BEHAVIOR;
D O I
10.1016/j.jmrt.2024.07.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study reports the preparation of two single-phase high-entropy rare-earth niobates (RE1/5Ho1/5Er1/5Y1/ 5Yb1/5)3NbO7, (RE = Ce, Lu), and two composite-phase high-entropy rare-earth niobates (RE1/5Ho1/5Er1/5Y1/ 5Yb1/5)3NbO7:(RE1/5Ho1/5Er1/5Y1/5Yb1/5)NbO4 = 1:2, (RE = Ce, Lu) via solid-phase synthesis. The interactions of these samples with molten calcium-magnesium-aluminum-silicates (CMAS) were studied at 1300 degrees C to explore their performance and mechanism in CMAS corrosion. The results indicate that the corrosion process involves the phase transformation of RE3NbO7 and the formation of apatite products. The Ce-composition sample exhibits superior performance in terms of reaction layer thickness, remaining CMAS thickness, and RE3+ content in the remaining CMAS. These findings underscore the potential application of high-entropy rare-earth niobates in thermal barrier coatings (TBCs) and contribute to understanding niobate system resistance to CMAS corrosion.
引用
收藏
页码:2388 / 2401
页数:14
相关论文
共 39 条
  • [1] Bac S, 2024, Comprehensive computational chemistry, P496
  • [2] Growth kinetics of apatite layer evolved from calcia-magnesia-aluminosilicate (CMAS) hot corrosion reaction of (Y1-xYbx)2SiO5 ceramics at elevated temperatures of 1673 K and 1773 K
    Cao, Gui
    Wang, Shu-Qi
    Wang, Yu-Hao
    Ding, Zhao-Ying
    Liu, Zhan-Guo
    Ouyang, Jia-Hu
    Wang, Ya-Ming
    Wang, Yu-Jin
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (02) : 600 - 611
  • [3] Chen Z, 2024, Adv Sci
  • [4] Mechanism of enhanced corrosion resistance against molten CMAS for pyrosilicates by high-entropy design
    Chen, Zeyu
    Lin, Chucheng
    Zheng, Wei
    Song, Xuemei
    Jiang, Caifen
    Niu, Yaran
    Zeng, Yi
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2023, 106 (10) : 6000 - 6013
  • [5] Investigation on improving corrosion resistance of rare earth pyrosilicates by high-entropy design with RE-doping
    Chen, Zeyu
    Lin, Chucheng
    Zheng, Wei
    Zeng, Yi
    Niu, Yaran
    [J]. CORROSION SCIENCE, 2022, 199
  • [6] Thermal-barrier coatings for more efficient gas-turbine engines
    Clarke, David R.
    Oechsner, Matthias
    Padture, Nitin P.
    [J]. MRS BULLETIN, 2012, 37 (10) : 891 - 902
  • [7] Thermochemistry of calcium rare-earth silicate oxyapatites
    Costa, Gustavo
    Harder, Bryan J.
    Bansal, Narottam P.
    Kowalski, Benjamin A.
    Stokes, Jamesa L.
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2020, 103 (02) : 1446 - 1453
  • [8] Thermodynamics of reaction between gas-turbine ceramic coatings and ingested CMAS corrodents
    Costa, Gustavo
    Harder, Bryan J.
    Wiesner, Valerie L.
    Zhu, Dongming
    Bansal, Narottam
    Lee, Kang N.
    Jacobson, Nathan S.
    Kapush, Denys
    Ushakov, Sergey V.
    Navrotsky, Alexandra
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (05) : 2948 - 2964
  • [9] CMAS degradation of EB-PVD TBCs: The effect of basicity
    Craig, M.
    Ndamka, N. L.
    Wellman, R. G.
    Nicholls, J. R.
    [J]. SURFACE & COATINGS TECHNOLOGY, 2015, 270 : 145 - 153
  • [10] Electronic oxide polarizability and optical basicity of simple oxides .1.
    Dimitrov, V
    Sakka, S
    [J]. JOURNAL OF APPLIED PHYSICS, 1996, 79 (03) : 1736 - 1740