A predictive mesoscale model for continuous dynamic recrystallization

被引:9
作者
Ferraz, Franz Miller Branco [1 ,2 ]
Buzolin, Ricardo Henrique [3 ]
Ebenbauer, Stefan [4 ]
Leitner, Thomas [5 ]
Krumphals, Alfred [5 ]
Poletti, Maria Cecilia [1 ,2 ]
机构
[1] Graz Univ Technol, Inst Mat Sci Joining & Forming, Kopernikusgasse 24-1, A-8010 Graz, Austria
[2] Christian Doppler Lab Design High Performance Allo, Kopernikusgasse 24-I, A-8010 Graz, Austria
[3] Voestalpine Tubulars GmbH & Co KG, Alpinestr 17, A-8652 Kindberg Aumuehl, Austria
[4] Voestalpine BOHLER Bleche GmbH & Co KG, Bohler Gasse 1, A-8680 Murzzuschlag, Austria
[5] Voestalpine BOHLER Edelstahl GmbH & Co KG, Mariazellerstr 25, A-8605 Kapfenberg, Austria
关键词
Modeling; FEM; Continuous dynamic recrystallization; Torsion; Misorientation angle; Titanium alloys; 2-PHASE TITANIUM-ALLOYS; HOT DEFORMATION; PLASTIC-DEFORMATION; MICROSTRUCTURE EVOLUTION; DISLOCATION MECHANICS; BEHAVIOR; SIMULATION; TI-6AL-4V; GRADIENT;
D O I
10.1016/j.ijplas.2024.104022
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Thermomechanical processing of titanium alloys often requires complex routes to achieve the desired final microstructure. Recent advances in modeling and simulation tools have facilitated the optimization of these processing routes. However, existing models often fail to accurately predict microstructural changes at large deformations. In this study, we refine the physical principles of an existing mean-field model and propose a calibration method that uses experimental results under isothermal conditions, accounting for the actual local deformation within the workpiece. This new approach improves the predictability of microstructural changes due to continuous dynamic recrystallization during torsion and compression experiments. Additionally, we integrate the model into the commercial FEM-based DEFORMTM 2D software to predict the local microstructure evolution within hot torsion specimens thermomechanically treated by resistive heating. Validation using non-isothermal deformation tests demonstrates that the model provides realistic simulations at high strain rates, where adiabatic heat modifies temperature, flow stress and microstructure. This study demonstrates the intrinsic correlation between microstructure, flow behavior, and workpiece geometry, considering the impact of deformation history in thermomechanical processes.
引用
收藏
页数:24
相关论文
共 50 条
[21]   On the microstructure evolution under continuous dynamic recrystallization [J].
Bodyakova, A. ;
Odnobokova, M. ;
Musin, F. ;
Tikhonova, M. ;
Kaibyshev, R. ;
Valiev, R. Z. ;
Belyakov, A. .
MATERIALS LETTERS, 2025, 399
[22]   Continuous dynamic recrystallization in low density steel [J].
Abedi, H. R. ;
Hanzaki, A. Zarei ;
Liu, Z. ;
Xin, R. ;
Haghdadi, N. ;
Hodgson, P. D. .
MATERIALS & DESIGN, 2017, 114 :55-64
[23]   A novel simulation of continuous dynamic recrystallization process for 2219 aluminium alloy using cellular automata technique [J].
Liu, Lei ;
Wu, Yunxin ;
Ahmad, Abdulrahaman Shuaibu .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 815
[24]   Dynamic recrystallization model of 30% SiCp/Al composite [J].
Sun, Yali ;
Xie, Jingpei ;
Hao, Shiming ;
Wang, Aiqin ;
Liu, Pei ;
Li, Min .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 649 :865-871
[25]   Continuous dynamic recrystallization behaviors in a single-phase deformed Ti-55511 alloy by cellular automata model [J].
Wu, Gui-Cheng ;
Lin, Y. C. ;
Chen, Ming-Song ;
Qiu, Wei ;
Zeng, Ning-Fu ;
Zhang, Song ;
Wan, Miao ;
He, Dao-Guang ;
Jiang, Yu-Qiang ;
Naseri, Majid .
JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002
[26]   A Combined Method to Model Dynamic Recrystallization Based on Cellular Automaton and a Phenomenological (CAP) Approach [J].
Azarbarmas, Morteza ;
Mirjavadi, Seyed Sajad ;
Ghasemi, Ali ;
Hamouda, Abdel Magid .
METALS, 2018, 8 (11)
[27]   Continuous dynamic recrystallization during severe plastic deformation [J].
Bacca, Mattia ;
Hayhurst, David R. ;
McMeeking, Robert M. .
MECHANICS OF MATERIALS, 2015, 90 :148-156
[28]   Continuous dynamic recrystallization in a superplastic 7075 aluminum alloy [J].
Yang, XY ;
Miura, H ;
Sakai, T .
MATERIALS TRANSACTIONS, 2002, 43 (10) :2400-2407
[29]   A continuous dynamic recrystallization constitutive model combined with grain fragmentation and subgrain rotation for aluminum alloy 2219 under hot deformation [J].
Gan, Tian ;
Yu, Zhongqi ;
Zhao, Yixi ;
Fan, Xiaoguang ;
Lai, Xinmin .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2021, 29 (02)
[30]   A Physically Based Constitutive Model and Continuous Dynamic Recrystallization Behavior Analysis of 2219 Aluminum Alloy during Hot Deformation Process [J].
Liu, Lei ;
Wu, Yunxin ;
Gong, Hai ;
Li, Shuang ;
Ahmad, A. S. .
MATERIALS, 2018, 11 (08)