Minimal Terracini Loci in a Plane and Their Generalizations

被引:0
作者
Ballico, Edoardo [1 ]
机构
[1] Univ Trento, Dept Math, I-38123 Trento, Italy
来源
APPLIEDMATH | 2024年 / 4卷 / 02期
关键词
projective plane; Terracini locus; double points; Veronese embedding; zero-dimensional scheme; Hilbert function; SECANT VARIETIES; VERONESE VARIETIES; HORACE METHOD; INTERPOLATION; CURVES; POINTS; RANK;
D O I
10.3390/appliedmath4020028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study properties of the minimal Terracini loci, i.e., families of certain zero-dimensional schemes, in a projective plane. Among the new results here are: a maximality theorem and the existence of arbitrarily large gaps or non-gaps for the integers x for which the minimal Terracini locus in degree d is non-empty. We study similar theorems for the critical schemes of the minimal Terracini sets. This part is framed in a more general framework.
引用
收藏
页码:529 / 543
页数:15
相关论文
共 40 条