Anti-PD-1 therapy triggers Tfh cell-dependent IL-4 release to boost CD8 T cell responses in tumor-draining lymph nodes

被引:8
作者
Ruggiu, Mathilde [1 ]
Guerin, Marion V. [1 ]
Corre, Beatrice [1 ]
Bardou, Margot [1 ]
Alonso, Ruby [1 ]
Russo, Erica [1 ]
Garcia, Zacarias [1 ]
Feldmann, Lea [1 ]
Lemaitre, Fabrice [1 ]
Dusseaux, Mathilde [2 ]
Grandjean, Capucine L. [1 ]
Bousso, Philippe [1 ,3 ]
机构
[1] Univ Paris Cite, INSERM U1223, Inst Pasteur, Paris, France
[2] Inst Pasteur, Human Dis Models Core Facil, Paris, France
[3] Vaccine Res Inst, Creteil, France
基金
美国国家卫生研究院;
关键词
CANCER-IMMUNOTHERAPY; PEMBROLIZUMAB; CHEMOTHERAPY; NIVOLUMAB; CYTOKINES; MELANOMA; IMMUNITY; BURST;
D O I
10.1084/jem.20232104
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Anti-PD-1 therapy targets intratumoral CD8(+) T cells to promote clinical responses in cancer patients. Recent evidence suggests an additional activity in the periphery, but the underlying mechanism is unclear. Here, we show that anti-PD-1 mAb enhances CD8(+) T cell responses in tumor-draining lymph nodes by stimulating cytokine production in follicular helper T cells (Tfh). In two different models, anti-PD-1 mAb increased the activation and proliferation of tumor-specific T cells in lymph nodes. Surprisingly, anti-PD-1 mAb did not primarily target CD8(+) T cells but instead stimulated IL-4 production by Tfh cells, the major population bound by anti-PD-1 mAb. Blocking IL-4 or inhibiting the Tfh master transcription factor BCL6 abrogated anti-PD-1 mAb activity in lymph nodes while injection of IL-4 complexes was sufficient to recapitulate anti-PD-1 mAb activity. A similar mechanism was observed in a vaccine model. Finally, nivolumab also boosted human Tfh cells in humanized mice. We propose that Tfh cells and IL-4 play a key role in the peripheral activity of anti-PD-1 mAb.
引用
收藏
页数:25
相关论文
共 64 条
[1]  
[Anonymous], 2020, J IMMUNOTHER CANCER, V8, DOI DOI 10.1136/jitc-2020-001187
[2]   In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy [J].
Arlauckas, Sean P. ;
Garris, Christopher S. ;
Kohler, Rainer H. ;
Kitaoka, Maya ;
Cuccarese, Michael F. ;
Yang, Katherine S. ;
Miller, Miles A. ;
Carlson, Jonathan C. ;
Freeman, Gordon J. ;
Anthony, Robert M. ;
Weissleder, Ralph ;
Pittet, Mikael J. .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (389)
[3]   Programmed Death-1 Blockade With Pembrolizumab in Patients With Classical Hodgkin Lymphoma After Brentuximab Vedotin Failure [J].
Armand, Philippe ;
Shipp, Margaret A. ;
Ribrag, Vincent ;
Michot, Jean-Marie ;
Zinzani, Pier Luigi ;
Kuruvilla, John ;
Snyder, Ellen S. ;
Ricart, Alejandro D. ;
Balakumaran, Arun ;
Rose, Shelonitda ;
Moskowitz, Craig H. .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (31) :3733-+
[4]   QuPath: Open source software for digital pathology image analysis [J].
Bankhead, Peter ;
Loughrey, Maurice B. ;
Fernandez, Jose A. ;
Dombrowski, Yvonne ;
Mcart, Darragh G. ;
Dunne, Philip D. ;
McQuaid, Stephen ;
Gray, Ronan T. ;
Murray, Liam J. ;
Coleman, Helen G. ;
James, Jacqueline A. ;
Salto-Tellez, Manuel ;
Hamilton, Peter W. .
SCIENTIFIC REPORTS, 2017, 7
[5]   Visualizing the Functional Diversification of CD8+ T Cell Responses in Lymph Nodes [J].
Beuneu, Helene ;
Lemaitre, Fabrice ;
Deguine, Jacques ;
Moreau, Helene D. ;
Bouvier, Isabelle ;
Garcia, Zacarias ;
Albert, Matthew L. ;
Bousso, Philippe .
IMMUNITY, 2010, 33 (03) :412-423
[6]   Tumour necrosis factor, interferon-gamma and interleukins as predictive markers of antiprogrammed cell-death protein-1 treatment in advanced non-small cell lung cancer: a pragmatic approach in clinical practice [J].
Boutsikou, Efimia ;
Domvri, Kalliopi ;
Hardavella, Georgia ;
Tsiouda, Dora ;
Zarogoulidis, Konstantinos ;
Kontakiotis, Theodoros .
THERAPEUTIC ADVANCES IN MEDICAL ONCOLOGY, 2018, 10
[7]   High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors [J].
Brummelman, Jolanda ;
Mazza, Emilia M. C. ;
Alvisi, Giorgia ;
Colombo, Federico S. ;
Grilli, Andrea ;
Mikulak, Joanna ;
Mavilio, Domenico ;
Alloisio, Marco ;
Ferrari, Francesco ;
Lopci, Egesta ;
Novellis, Pierluigi ;
Veronesi, Giulia ;
Lugli, Enrico .
JOURNAL OF EXPERIMENTAL MEDICINE, 2018, 215 (10) :2520-2535
[8]   BCL6 BTB-specific inhibitor reversely represses T-cell activation, Tfh cells differentiation, and germinal center reaction in vivo [J].
Cai, Yanhui ;
Poli, Adi Narayana Reddy ;
Vadrevu, Surya ;
Gyampoh, Kwasi ;
Hart, Colin ;
Ross, Brian ;
Fair, Matt ;
Xue, Fengtian ;
Salvino, Joseph M. ;
Montaner, Luis J. .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2021, 51 (10) :2441-2451
[9]   BCL6 BTB-specific inhibition via FX1 treatment reduces Tfh cells and reverses lymphoid follicle hyperplasia in Indian rhesus macaque (Macaca mulatta) [J].
Cai, Yanhui ;
Watkins, Meagan A. ;
Xue, Fengtian ;
Ai, Yong ;
Cheng, Huiming ;
Midkiff, Cecily C. ;
Wang, Xiaolei ;
Alvarez, Xavier ;
Poli, Adi Narayana Reddy ;
Salvino, Joseph M. ;
Veazey, Ronald S. ;
Montaner, Luis J. .
JOURNAL OF MEDICAL PRIMATOLOGY, 2020, 49 (01) :26-33
[10]   Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma [J].
Cardenas, Mariano G. ;
Yu, Wenbo ;
Beguelin, Wendy ;
Teater, Matthew R. ;
Geng, Huimin ;
Goldstein, Rebecca L. ;
Oswald, Erin ;
Hatzi, Katerina ;
Yang, Shao-Ning ;
Cohen, Joanna ;
Shaknovich, Rita ;
Vanommeslaeghe, Kenno ;
Cheng, Huimin ;
Liang, Dongdong ;
Cho, Hyo Je ;
Abbott, Joshua ;
Tam, Wayne ;
Du, Wei ;
Leonard, John P. ;
Elemento, Olivier ;
Cerchietti, Leandro ;
Cierpicki, Tomasz ;
Xue, Fengtian ;
MacKerell, Alexander D., Jr. ;
Melnick, Ari M. .
JOURNAL OF CLINICAL INVESTIGATION, 2016, 126 (09) :3351-3362