A new class of high-order supplementary variable methods for the Klein-Gordon-Zakharov system

被引:0
|
作者
Li, Xin [1 ]
Zhang, Luming [2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2024年 / 138卷
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Zakharov system; Supplementary variable method; Optimization problem; High accuracy; SINE PSEUDOSPECTRAL METHOD; FINITE-ELEMENT METHODS; SCHEMES; EQUATIONS;
D O I
10.1016/j.cnsns.2024.108220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the paradigm of supplementary variable method (SVM), we reformulate the Klein-Gordon-Zakharov system into equivalent optimization problem subject to PDE constraints, and then present a novel class of high-order energy-preserving numerical algorithms to solve it numerically. The optimization model is discretized by applying the Gauss collocation method as well as the prediction-correction technique in time and the sine pseudo-spectral method in space. Experimental results and some comparisons between this method and other reported ones are provided to favor the suggested method in the overall performance.
引用
收藏
页数:16
相关论文
共 44 条
  • [1] Stabilization for the Klein-Gordon-Zakharov system
    Li, Weijia
    Shangguan, Yuqi
    Yan, Weiping
    ASYMPTOTIC ANALYSIS, 2023, 135 (3-4) : 305 - 348
  • [2] A uniformly first-order accurate method for Klein-Gordon-Zakharov system in simultaneous high-plasma-frequency and subsonic limit regime
    Su, Chunmei
    Zhao, Xiaofei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 428
  • [3] Numerical solution of distributed-order time fractional Klein-Gordon-Zakharov system
    Heydari, M. H.
    Razzaghi, M.
    Baleanu, D.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 67
  • [4] From the Klein-Gordon-Zakharov system to a singular nonlinear Schrodinger system
    Masmoudi, Nader
    Nakanishi, Kenji
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (04): : 1073 - 1096
  • [5] Extended wave solutions for a nonlinear Klein-Gordon-Zakharov system
    Shi, Qihong
    Xiao, Qian
    Liu, Xiaojun
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) : 9922 - 9929
  • [6] Galerkin finite element methods for the generalized Klein-Gordon-Zakharov equations
    Gao, Yali
    Mei, Liquan
    Li, Rui
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2466 - 2484
  • [7] Orbital instability of standing waves for the Klein-Gordon-Zakharov system
    Gan, Zaihui
    ADVANCED NONLINEAR STUDIES, 2008, 8 (02) : 413 - 428
  • [8] AN EXPONENTIAL WAVE INTEGRATOR SINE PSEUDOSPECTRAL METHOD FOR THE KLEIN-GORDON-ZAKHAROV SYSTEM
    Bao, Weizhu
    Dong, Xuanchun
    Zhao, Xiaofei
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) : A2903 - A2927
  • [9] Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system
    Ohta, Masahito
    Todorova, Grozdena
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) : 1912 - 1931
  • [10] Small energy scattering for the Klein-Gordon-Zakharov system with radial symmetry
    Guo, Zihua
    Nakanishi, Kenji
    Wang, Shuxia
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (04) : 733 - 755