A new class of high-order supplementary variable methods for the Klein-Gordon-Zakharov system
被引:0
|
作者:
Li, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R ChinaHefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
Li, Xin
[1
]
Zhang, Luming
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Peoples R ChinaHefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
Zhang, Luming
[2
]
机构:
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Peoples R China
来源:
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION
|
2024年
/
138卷
基金:
中国国家自然科学基金;
关键词:
Klein-Gordon-Zakharov system;
Supplementary variable method;
Optimization problem;
High accuracy;
SINE PSEUDOSPECTRAL METHOD;
FINITE-ELEMENT METHODS;
SCHEMES;
EQUATIONS;
D O I:
10.1016/j.cnsns.2024.108220
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, based on the paradigm of supplementary variable method (SVM), we reformulate the Klein-Gordon-Zakharov system into equivalent optimization problem subject to PDE constraints, and then present a novel class of high-order energy-preserving numerical algorithms to solve it numerically. The optimization model is discretized by applying the Gauss collocation method as well as the prediction-correction technique in time and the sine pseudo-spectral method in space. Experimental results and some comparisons between this method and other reported ones are provided to favor the suggested method in the overall performance.
机构:
Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
Tech Univ Munich, Zentrum Math, D-85748 Garching, GermanyTsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
Su, Chunmei
Zhao, Xiaofei
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Computat Sci Hubei Key Lab, Wuhan 430072, Peoples R ChinaTsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Gao, Yali
Mei, Liquan
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Mei, Liquan
Li, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
机构:
Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Peoples R ChinaSichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Peoples R China
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Guo, Zihua
Nakanishi, Kenji
论文数: 0引用数: 0
h-index: 0
机构:
Kyoto Univ, Dept Math, Kyoto 6068502, JapanPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Nakanishi, Kenji
Wang, Shuxia
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China