Nonassociative cyclic algebras and the semiassociative Brauer monoid

被引:0
作者
Pumpluen, S. [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
基金
加拿大自然科学与工程研究理事会;
关键词
Skew polynomial ring; Semiassociative algebra; Cyclic algebra; Differential algebra; Menichetti algebra; Nonassociative algebra; Semiassociative Brauer monoid; DIVISION; EXTENSIONS; CODES;
D O I
10.1007/s12215-024-01105-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We look at classes of semiassociative algebras, with an emphasis on those that canonically generalize associative (generalized) cyclic algebras, and at their behaviour in the semiassociative Brauer monoid defined by Blachar, Haile, Matzri, Rein, and Vishne. A possible way to generalize this monoid in characteristic p that includes nonassociative differential algebras is briefly considered.
引用
收藏
页码:3253 / 3275
页数:23
相关论文
共 36 条
[1]  
Albert A.A., 1939, AM MATH SOC COLL PUB, V24
[2]   DIFFERENTIAL POLYNOMIALS AND DIVISION ALGEBRAS [J].
AMITSUR, AS .
ANNALS OF MATHEMATICS, 1954, 59 (02) :245-278
[3]   NON-COMMUTATIVE CYCLIC FIELDS [J].
AMITSUR, AS .
DUKE MATHEMATICAL JOURNAL, 1954, 21 (01) :87-105
[4]   Semiassociative algebras over a field [J].
Blachar, Guy ;
Haile, Darrell ;
Matzri, Eliyahu ;
Rein, Edan ;
Vishne, Uzi .
JOURNAL OF ALGEBRA, 2024, 649 :35-84
[5]   HOW A NONASSOCIATIVE ALGEBRA REFLECTS THE PROPERTIES OF A SKEW POLYNOMIAL [J].
Brown, C. ;
Pumplun, S. .
GLASGOW MATHEMATICAL JOURNAL, 2021, 63 (01) :6-26
[6]   Nonassociative cyclic extensions of fields and central simple algebras [J].
Brown, C. ;
Pumplun, S. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (06) :2401-2412
[7]   The automorphisms of Petit's algebras [J].
Brown, C. ;
Pumplun, S. .
COMMUNICATIONS IN ALGEBRA, 2018, 46 (02) :834-849
[8]  
Brown C., 2018, THESIS U NOTTINGHAM
[9]  
Childs L.N., PURELY INSEPARABLE F
[10]  
Dickson LE, 1906, T AM MATH SOC, V7, P370, DOI 10.2307/1986324