FeaCo: Reaching Robust Feature-Level Consensus in Noisy Pose Conditions

被引:9
作者
Gu, Jiaming [1 ]
Zhang, Jingyu [2 ]
Zhang, Muyang [1 ]
Meng, Weiliang [3 ]
Xu, Shibiao [4 ]
Zhang, Jiguang [3 ]
Zhang, Xiaopeng [3 ]
机构
[1] Univ Chinese Acad Sci, State Key Lab Multimodal Artificial Intelligence, Chinese Acad Sci, Sch Artificial Intelligence,Inst Automat, Beijing, Peoples R China
[2] Fudan Univ, Acad Engn & Technol, Shanghai, Peoples R China
[3] Chinese Acad Sci, State Key Lab Multimodal Artificial Intelligence, Inst Automat, Beijing, Peoples R China
[4] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023 | 2023年
基金
中国国家自然科学基金;
关键词
Collaborative perception; Intermediate fusion; Feature-level rectification; Noisy pose conditions; Robustness;
D O I
10.1145/3581783.3611880
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Collaborative perception offers a promising solution to overcome challenges such as occlusion and long-range data processing. However, limited sensor accuracy leads to noisy poses that misalign observations among vehicles. To address this problem, we propose the FeaCo, which achieves robust Feature-level Consensus among collaborating agents in noisy pose conditions without additional training. We design an efficient Pose-error Rectification Module (PRM) to align derived feature maps from different vehicles, reducing the adverse effect of noisy pose and bandwidth requirements. We also provide an effective multi-scale Cross-level Attention Module (CAM) to enhance information aggregation and interaction between various scales. Our FeaCo outperforms all other localization rectification methods, as validated on both the collaborative perception simulation dataset OPV2V and real-world dataset V2V4Real, reducing heading error and enhancing localization accuracy across various error levels. Our code is available at: https://github.com/jmgu0212/FeaCo.git.
引用
收藏
页码:3628 / 3636
页数:9
相关论文
共 30 条
[1]   LTE: The Evolution of Mobile Broadband [J].
Astely, David ;
Dahlman, Erik ;
Furuskar, Anders ;
Jading, Ylva ;
Lindstrom, Magnus ;
Parkvall, Stefan .
IEEE COMMUNICATIONS MAGAZINE, 2009, 47 (04) :44-51
[2]   Vehicular Ad Hoc Networks: A new challenge for localization-based systems [J].
Boukerche, Azzedine ;
Oliveira, Horacio A. B. F. ;
Nakamura, Eduardo F. ;
Loureiro, Antonio A. F. .
COMPUTER COMMUNICATIONS, 2008, 31 (12) :2838-2849
[3]   F-Cooper: Feature based Cooperative Perception for Autonomous Vehicle Edge Computing System Using 3D Point Clouds [J].
Chen, Qi ;
Ma, Xu ;
Tang, Sihai ;
Guo, Jingda ;
Yang, Qing ;
Fu, Song .
SEC'19: PROCEEDINGS OF THE 4TH ACM/IEEE SYMPOSIUM ON EDGE COMPUTING, 2019, :88-100
[4]   Cooper: Cooperative Perception for Connected Autonomous Vehicles based on 3D Point Clouds [J].
Chen, Qi ;
Tang, Sihai ;
Yang, Qing ;
Fu, Song .
2019 39TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2019), 2019, :514-524
[5]  
Dosovitskiy A., 2017, P 1 ANN C ROBOT LEAR, P1, DOI DOI 10.48550/ARXIV.1711.03938
[6]  
Dosovitskiy Alexey., 2021, PROC INT C LEARN REP, P2021, DOI [10.48550/arXiv.2010.11929, DOI 10.48550/ARXIV.2010.11929]
[7]  
He K., 2015, CORR, Vabs/1502.01852, DOI DOI 10.1109/CVPR.2016.90
[8]  
Hu Y., 2022, P NEUR INF PROC SYST, P4874
[9]   IEEE 802.11p: Towards an international standard for Wireless Access in Vehicular Environments [J].
Jiang, Daniel ;
Delgrossi, Luca .
2008 IEEE 67TH VEHICULAR TECHNOLOGY CONFERENCE-SPRING, VOLS 1-7, 2008, :2036-2040
[10]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90