Exploring the molecular mechanism of Epimedium for the treatment of ankylosing spondylitis based on network pharmacology, molecular docking, and molecular dynamics simulations

被引:1
|
作者
Wang, Xiangjin [1 ]
Wu, Lijiao [2 ]
Yu, Maobin [2 ]
Wang, Hao [1 ]
He, Langyu [1 ]
Hu, Yilang [1 ]
Li, Zhaosen [1 ]
Zheng, Yuqin [1 ]
Peng, Bo [3 ]
机构
[1] Chengdu Sports Univ, Sch Sports Med & Hlth, Chengdu 610000, Peoples R China
[2] Hosp Chengdu Univ Tradit Chinese Med, Chengdu 610000, Peoples R China
[3] Hosp Chengdu Univ Tradit Chinese Med, Dept Resp, Chengdu 610000, Peoples R China
关键词
Ankylosing spondylitis; Epimedium; inflammation; Molecular dynamics; Cyberpharmacology; OXIDATIVE STRESS; ICARIIN; BONE; INFLAMMATION; PROTEIN; CELLS; SPONDYLOARTHROPATHIES; DIFFERENTIATION; OSSIFICATION; PATHOGENESIS;
D O I
10.1007/s11030-024-10877-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ankylosing spondylitis (AS) is a rheumatic disease that causes inflammation and bone formation in the spine. Despite significant advances in treatment, adverse side effects have triggered research into natural compounds. Epimedium (EP) is a traditional Chinese herb with a variety of pharmacological activities, including antirheumatic, anti-inflammatory, and immunomodulatory activities; however, its direct effects on AS treatment and the underlying molecular mechanisms have not been systematically studied. Thus, here, we used network pharmacology, molecular docking, and molecular dynamics simulations to explore the targets of EP for treating AS. We constructed an interaction network to elucidate the complex relationship between EP and AS. Sixteen active ingredients in EP were screened; 80 potential targets were identified. In particular, 8-(3-methylbut-2-enyl)-2-phenylchromone, anhydroicaritin, and luteolin were the core components and TNF, IL-6, IL-1 beta, MMP9, and PTGS2 were the core targets. The GO and KEGG analyses indicated that EP may modulate multiple biological processes and pathways, including the AGE-RAGE, TNF, NF-kappa B/MAPK, and TLR signaling pathways, for AS treatment. Molecular docking and molecular dynamics simulations showed good affinity between the active components and core targets of EP, with stable binding within 100 nanoseconds. In particular, 8-(3-methylbut-2-enyl)-2-phenylchromone possessed the highest free energy of binding to PTGS2 and TNF (-115.575 and - 87.676 kcal/mol, respectively). Thus, EP may affect AS through multiple pathways, including the alleviation of inflammation, oxidative stress, and immune responses. In summary, we identified the active components and potential targets of EP, highlighting new strategies for the further experimental validation and exploration of lead compounds for treating AS.
引用
收藏
页码:591 / 606
页数:16
相关论文
共 50 条
  • [1] Molecular mechanism of Epimedium in the treatment of vascular dementia based on network pharmacology and molecular docking
    Xie, Chenchen
    Tang, Hao
    Liu, Gang
    Li, Changqing
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [2] Investigating the Molecular Mechanism of Qianghuo Shengshi Decoction in the Treatment of Ankylosing Spondylitis Based on Network Pharmacology and Molecular Docking Analysis
    Luo, Simin
    Xiao, Xiang
    Luo, Wenting
    Zhang, Xuan
    Zhang, Jian
    Tang, Songqi
    PROCESSES, 2022, 10 (08)
  • [3] Eucommia ulmoides Oliver's Multitarget Mechanism for Treatment of Ankylosing Spondylitis: A Study Based on Network Pharmacology and Molecular Docking
    Zhang, Hong-Sheng
    Zhang, Sheng-Nan
    Guo, Wei-Kun
    He, Sheng-Hua
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [4] Network pharmacology integrated with molecular docking and molecular dynamics simulations to explore the mechanism of Shaoyao Gancao Tang in the treatment of asthma and irritable bowel syndrome
    Ren, Mengjiao
    Ma, Jian
    Qu, Minye
    MEDICINE, 2024, 103 (50)
  • [5] Exploring the mechanism of Ginkgo biloba L. leaves in the treatment of vascular dementia based on network pharmacology, molecular docking, and molecular dynamics simulation
    Pan, Jienuo
    Tang, Jiqin
    Gai, Jialin
    Jin, Yilan
    Tang, Bingshun
    Fan, Xiaohua
    MEDICINE, 2023, 102 (21) : E33877
  • [6] Mechanism of Epimedium intervention in heart failure based on network pharmacology and molecular docking technology
    Chen, Boyang
    Li, Yuexing
    Yan, Yiping
    Yu, Haiyang
    Zhao, Lingjie
    Guan, Liancheng
    Zhang, Xufei
    Zhao, Jie
    Chen, Yunzhi
    MEDICINE, 2022, 101 (47) : E32059
  • [7] Exploring the mechanism of Suanzaoren decoction in treatment of insomnia based on network pharmacology and molecular docking
    Wang, Shuxiao
    Zhao, Yan
    Hu, Xingang
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [8] Exploring the mechanism of Erchen decoction in the treatment of atherosclerosis based on network pharmacology and molecular docking
    Li, Wenwen
    Zhang, Guowei
    Zhao, Zhenfeng
    Zuo, Yaoyao
    Sun, Zhenhai
    Chen, Shouqiang
    MEDICINE, 2023, 102 (46) : E35248
  • [9] Multi-target mechanism of Tripteryguim wilfordii Hook for treatment of ankylosing spondylitis based on network pharmacology and molecular docking
    Zhang, Jing
    Zhou, Yiting
    Ma, Zhiyuan
    ANNALS OF MEDICINE, 2021, 53 (01) : 1090 - 1098
  • [10] Exploring hub pyroptosis-related genes, molecular subtypes, and potential drugs in ankylosing spondylitis by comprehensive bioinformatics analysis and molecular docking
    Li, Xin
    Li, Xiangying
    Wang, Hongqiang
    Zhao, Xiang
    BMC MUSCULOSKELETAL DISORDERS, 2023, 24 (01)