A Dynamic Visual SLAM System Incorporating Object Tracking for UAVs

被引:1
作者
Li, Minglei [1 ]
Li, Jia [1 ]
Cao, Yanan [1 ]
Chen, Guangyong [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R China
[2] Chinese Aeronaut Radio Elect Res Inst, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
visual SLAM; UAVs; multiple object tracking; dynamic objects; ROBUST; VERSATILE;
D O I
10.3390/drones8060222
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The capability of unmanned aerial vehicles (UAVs) to capture and utilize dynamic object information assumes critical significance for decision making and scene understanding. This paper presents a method for UAV relative positioning and target tracking based on a visual simultaneousocalization and mapping (SLAM) framework. By integrating an object detection neural network into the SLAM framework, this method can detect moving objects and effectively reconstruct the 3D map of the environment from image sequences. For multiple object tracking tasks, we combine the region matching of semantic detection boxes and the point matching of the optical flow method to perform dynamic object association. This joint association strategy can prevent trackingoss due to the small proportion of the object in the whole image sequence. To address the problem ofacking scale information in the visual SLAM system, we recover the altitude data based on a RANSAC-based plane estimation approach. The proposed method is tested on both the self-created UAV dataset and the KITTI dataset to evaluate its performance. The results demonstrate the robustness and effectiveness of the solution in facilitating UAV flights.
引用
收藏
页数:17
相关论文
共 61 条
[1]  
Agisoft, 2023, Agisoft metashape
[2]   PKS: A photogrammetric key-frame selection method for visual-inertial systems built on ORB-SLAM3 [J].
Azimi, Arash ;
Ahmadabadian, Ali Hosseininaveh ;
Remondino, Fabio .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 191 :18-32
[3]  
Balamurugan G., 2016, 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), P198, DOI 10.1109/SCOPES.2016.7955787
[4]  
Bârsan IA, 2018, IEEE INT CONF ROBOT, P7510
[5]   A comprehensive overview of dynamic visual SLAM and deep learning: concepts, methods and challenges [J].
Beghdadi, Ayman ;
Mallem, Malik .
MACHINE VISION AND APPLICATIONS, 2022, 33 (04)
[6]   DynaSLAM II: Tightly-Coupled Multi-Object Tracking and SLAM [J].
Bescos, Berta ;
Campos, Carlos ;
Tardos, Juan D. ;
Neira, Jose .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) :5191-5198
[7]  
Bescos B, 2019, IEEE INT CONF ROBOT, P5460, DOI [10.1109/icra.2019.8794417, 10.1109/ICRA.2019.8794417]
[8]   DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes [J].
Bescos, Berta ;
Facil, Jose M. ;
Civera, Javier ;
Neira, Jose .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :4076-4083
[9]   Dynamic Object Removal and Spatio-Temporal RGB-D Inpainting via Geometry-Aware Adversarial Learning [J].
Besic, Borna ;
Valada, Abhinav .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2022, 7 (02) :170-185
[10]   A Naturalistic Open Source Movie for Optical Flow Evaluation [J].
Butler, Daniel J. ;
Wulff, Jonas ;
Stanley, Garrett B. ;
Black, Michael J. .
COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 :611-625