A hierarchic high-order Timoshenko beam finite element

被引:17
|
作者
Tai, C. -Y. [1 ,2 ]
Chan, Y. J. [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Mech Engn, Kuo Kuang Rd, Taichung 40227, Taiwan
[2] Ind Technol Res Inst, Machine Tools Technol Ctr, Wenxian Rd, Nantou 54041, Taiwan
关键词
Timoshenko beam; p-Version finite element method; TRANSVERSE VIBRATIONS; P-VERSION; SHEAR; SPECTRUM; DYNAMICS;
D O I
10.1016/j.compstruc.2015.12.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Timoshenko beam theory (TBT) is suitable for vibration studies as it describes beams with small models. The super-convergent Timoshenko beam element is improved by adding hierarchic high-order shape functions using Legendre polynomials, and correction terms were added where necessary. The proposed element is validated in static, dynamic and rotordynamic analyses. With the same model size, the fractional error of the 2nd cantilever beam natural frequency with the p-version beam element is 1/100th of the h-version counterpart, and error in estimating natural frequency split in rotors is reduced. The proposed element is also applied to estimate natural frequencies in experiments. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 58
页数:11
相关论文
共 50 条
  • [31] HIGH-ORDER CURVILINEAR FINITE ELEMENT METHODS FOR LAGRANGIAN HYDRODYNAMICS
    Dobrev, Veselin A.
    Kolev, Tzanio V.
    Rieben, Robert N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05): : B606 - B641
  • [32] HIGH-ORDER MULTISCALE FINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    Hesthaven, Jan S.
    Zhang, Shun
    Zhu, Xueyu
    MULTISCALE MODELING & SIMULATION, 2014, 12 (02): : 650 - 666
  • [33] A High-Order Finite Element Method for the Linearised Euler Equations
    Hamiche, K.
    Gabard, G.
    Beriot, H.
    ACTA ACUSTICA UNITED WITH ACUSTICA, 2016, 102 (05) : 813 - 823
  • [34] Use of discontinuity factors in high-order finite element methods
    Vidal-Ferrandiz, A.
    Gonzalez-Pintor, S.
    Ginestar, D.
    Verdu, G.
    Asadzadeh, M.
    Demaziere, C.
    ANNALS OF NUCLEAR ENERGY, 2016, 87 : 728 - 738
  • [35] A high-order finite element method for electrical impedance tomography
    Pursiainen, S.
    Hakula, H.
    PIERS 2006 CAMBRIDGE: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS, 2006, : 260 - +
  • [36] Efficient exascale discretizations: High-order finite element methods
    Kolev, Tzanio
    Fischer, Paul
    Min, Misun
    Dongarra, Jack
    Brown, Jed
    Dobrev, Veselin
    Warburton, Tim
    Tomov, Stanimire
    Shephard, Mark S.
    Abdelfattah, Ahmad
    Barra, Valeria
    Beams, Natalie
    Camier, Jean-Sylvain
    Chalmers, Noel
    Dudouit, Yohann
    Karakus, Ali
    Karlin, Ian
    Kerkemeier, Stefan
    Lan, Yu-Hsiang
    Medina, David
    Merzari, Elia
    Obabko, Aleksandr
    Pazner, Will
    Rathnayake, Thilina
    Smith, Cameron W.
    Spies, Lukas
    Swirydowicz, Kasia
    Thompson, Jeremy
    Tomboulides, Ananias
    Tomov, Vladimir
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2021, 35 (06): : 527 - 552
  • [37] Piecewise bilinear preconditioning of high-order finite element methods
    Kim, Sang Dong
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 26 : 228 - 242
  • [38] High-order finite element methods for cardiac monodomain simulations
    Vincent, Kevin P.
    Gonzales, MatthewJ.
    Gillette, AndrewK.
    Villongco, Christopher T.
    Pezzuto, Simone
    Omens, Jeffrey H.
    Holst, Michael J.
    McCulloch, Andrew D.
    FRONTIERS IN PHYSIOLOGY, 2015, 6
  • [39] SCALABLE LOW-ORDER FINITE ELEMENT PRECONDITIONERS FOR HIGH-ORDER SPECTRAL ELEMENT POISSON SOLVERS
    Bello-Maldonado, Pedro D.
    Fischer, Paul F.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : S2 - S18
  • [40] A Timoshenko finite element straight beam with internal degrees of freedom
    Caillerie, Denis
    Kotronis, Panagiotis
    Cybulski, Robert
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2015, 39 (16) : 1753 - 1773