A hierarchic high-order Timoshenko beam finite element

被引:17
|
作者
Tai, C. -Y. [1 ,2 ]
Chan, Y. J. [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Mech Engn, Kuo Kuang Rd, Taichung 40227, Taiwan
[2] Ind Technol Res Inst, Machine Tools Technol Ctr, Wenxian Rd, Nantou 54041, Taiwan
关键词
Timoshenko beam; p-Version finite element method; TRANSVERSE VIBRATIONS; P-VERSION; SHEAR; SPECTRUM; DYNAMICS;
D O I
10.1016/j.compstruc.2015.12.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Timoshenko beam theory (TBT) is suitable for vibration studies as it describes beams with small models. The super-convergent Timoshenko beam element is improved by adding hierarchic high-order shape functions using Legendre polynomials, and correction terms were added where necessary. The proposed element is validated in static, dynamic and rotordynamic analyses. With the same model size, the fractional error of the 2nd cantilever beam natural frequency with the p-version beam element is 1/100th of the h-version counterpart, and error in estimating natural frequency split in rotors is reduced. The proposed element is also applied to estimate natural frequencies in experiments. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 58
页数:11
相关论文
共 50 条
  • [21] Finite element method for a nonlocal Timoshenko beam model
    Alotta, Gioacchino
    Failla, Giuseppe
    Zingales, Massimiliano
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2014, 89 : 77 - 92
  • [22] Variational correctness and Timoshenko beam finite element elastodynamics
    Jafarali, P.
    Ameen, Mohammed
    Mukherjee, Somenath
    Prathap, Gangan
    JOURNAL OF SOUND AND VIBRATION, 2007, 299 (1-2) : 196 - 211
  • [23] A consistent Timoshenko hysteretic beam finite element model
    Amir, M.
    Papakonstantinou, K. G.
    Warn, G. P.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2020, 119
  • [24] ELEMENTS: A high-order finite element library in C++
    Moore, Jacob L.
    Morgan, Nathaniel R.
    Horstemeyer, Mark F.
    SOFTWAREX, 2019, 10
  • [25] High-order finite element methods for parallel atmospheric modeling
    St Cyr, A
    Thomas, SJ
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 1, PROCEEDINGS, 2005, 3514 : 256 - 262
  • [26] High-order extended finite element method for cracked domains
    Laborde, P
    Pommier, J
    Renard, Y
    Salaün, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 64 (03) : 354 - 381
  • [27] High-order finite element method for atomic structure calculations
    Certfik, Ondrej
    Pask, John E.
    Fernando, Isuru
    Goswami, Rohit
    Sukumar, N.
    Collins, Lee. A.
    Manzini, Gianmarco
    Vackar, Jirf
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 297
  • [28] High-order finite element approximation for partial differential equations
    Chernov, Alexey
    Schwab, Christoph
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (04) : 709 - 711
  • [29] Deep ReLU networks and high-order finite element methods
    Opschoor, Joost A. A.
    Petersen, Philipp C.
    Schwab, Christoph
    ANALYSIS AND APPLICATIONS, 2020, 18 (05) : 715 - 770
  • [30] High-order finite-element analysis of periodic absorbers
    Lou, Z
    Jin, JM
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2003, 37 (03) : 203 - 207