Genome-wide profiles of H3K9me3, H3K27me3 modifications, and DNA methylation during diapause of Asian corn borer (Ostrinia furnacalis)

被引:1
|
作者
Lv, Pengfei [1 ]
Yang, Xingzhuo [1 ]
Zhao, Xianguo [1 ]
Zhao, Zhangwu [1 ]
Du, Juan [1 ]
机构
[1] China Agr Univ, Coll Plant Protect, Dept Entomol, MOA Key Lab Pest Monitoring & Green Management, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
JUVENILE-HORMONE; LARVAL DIAPAUSE; HISTONE MODIFICATION; NEXT-GENERATION; PUPAL DIAPAUSE; FLESH FLY; INSECT; LEPIDOPTERA; SILKWORM; EXPRESSION;
D O I
10.1101/gr.278661.123
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Diapause represents a crucial adaptive strategy used by insects to cope with changing environmental conditions. In North China, the Asian corn borer (Ostrinia furnacalis) enters a winter larval diapause stage. Although there is growing evidence implicating epigenetic mechanisms in diapause regulation, it remains unclear whether dynamic genome-wide profiles of epigenetic modifications exist during this process. By investigating multiple histone modifications, we have discovered the essential roles of H3K9me3 and H3K27me3 during diapause of the Asian corn borer. Building upon previous findings in vertebrates highlighting the connection between DNA methylation and repressive histone methylations, we have examined changes in the genome-wide profile of H3K9me3, H3K27me3, and DNA methylation at the nondiapause, prediapause, and diapause stages. Data analysis reveals significant alterations in these three modifications during diapause. Moreover, we observe a correlation between the H3K9me3 and H3K27me3 modification sites during diapause, whereas DNA modifications show little association with either H3K9me3 or H3K27me3. Integrative analysis of epigenome and expression data unveils the relationship between these epigenetic modifications and gene expression levels at corresponding diapause stages. Furthermore, by studying the function of histone modifications on genes known to be important in diapause, especially those involved in the juvenile pathway, we discover that the juvenile hormone pathway lies downstream from H3K9me3 and H3K27me3 histone modifications. Finally, the analysis of gene loci with modified modifications unreported in diapause uncovers novel pathways potentially crucial in diapause regulation. This study provides a valuable resource for future investigations aiming to elucidate the underlying mechanisms of diapause.
引用
收藏
页码:725 / 739
页数:15
相关论文
共 50 条
  • [21] Profiling of H3K4me3 and H3K27me3 and Their Roles in Gene Subfunctionalization in Allotetraploid Cotton
    Zhang, Aicen
    Wei, Yangyang
    Shi, Yining
    Deng, Xiaojuan
    Gao, Jingjing
    Feng, Yilong
    Zheng, Dongyang
    Cheng, Xuejiao
    Li, Zhaoguo
    Wang, Tao
    Wang, Kunbo
    Liu, Fang
    Peng, Renhai
    Zhang, Wenli
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [22] Ageing-Related Changes to H3K4me3, H3K27ac, and H3K27me3 in Purified Mouse Neurons
    Signal, Brandon
    Phipps, Andrew J.
    Giles, Katherine A.
    Huskins, Shannon N.
    Mercer, Timothy R.
    Robinson, Mark D.
    Woodhouse, Adele
    Taberlay, Phillippa C.
    CELLS, 2024, 13 (16)
  • [23] Hypoxic reprograming of H3K27me3 and H3K4me3 at the INK4A locus
    Chang, Soojeong
    Park, Bongju
    Choi, Kang
    Moon, Yunwon
    Lee, Ho-Youl
    Park, Hyunsung
    FEBS LETTERS, 2016, 590 (19) : 3407 - 3415
  • [24] Genetically encoded epigenetic sensors for visualization of H3K9me3, H3K9ac and H3K4me1 histone modifications in living cells
    Stepanov, Afanasii I.
    Putlyaeva, Lidia, V
    Besedovskaya, Zlata
    Shuvaeva, Alexandra A.
    Karpenko, Nikita, V
    Rukh, Shah
    Gorbachev, Dmitry A.
    Malyshevskaia, Kseniia K.
    Terskikh, Alexey, V
    Lukyanov, Konstantin A.
    Gurskaya, Nadya G.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 733
  • [25] Targeted in vivo epigenome editing of H3K27me3
    Hiroto S. Fukushima
    Hiroyuki Takeda
    Ryohei Nakamura
    Epigenetics & Chromatin, 12
  • [26] H3K27me3 is an Epigenetic Mark of Relevance in Endometriosis
    Colon-Caraballo, Mariano
    Monteiro, Janice B.
    Flores, Idhaliz
    REPRODUCTIVE SCIENCES, 2015, 22 (09) : 1134 - 1142
  • [27] Thermal Manipulation During Embryogenesis Impacts H3K4me3 and H3K27me3 Histone Marks in Chicken Hypothalamus
    David, Sarah-Anne
    Carvalho, Anais Vitorino
    Gimonnet, Coralie
    Brionne, Aurelien
    Hennequet-Antier, Christelle
    Piegu, Benoit
    Crochet, Sabine
    Courousse, Nathalie
    Bordeau, Thierry
    Bigot, Yves
    Collin, Anne
    Coustham, Vincent
    FRONTIERS IN GENETICS, 2019, 10
  • [28] Distinct H3K27me3 and H3K27ac Modifications in Neural Tube Defects Induced by Benzo[a]pyrene
    Lin, Shanshan
    Wang, Chengrui
    Li, Zhiwen
    Qiu, Xiu
    BRAIN SCIENCES, 2023, 13 (02)
  • [29] Targeted in vivo epigenome editing of H3K27me3
    Fukushima, Hiroto S.
    Takeda, Hiroyuki
    Nakamura, Ryohei
    EPIGENETICS & CHROMATIN, 2019, 12 (1)
  • [30] The role of H3K9me3 in oral squamous cell carcinoma
    Tanaka, Misako
    Harada, Hiroyuki
    Kimura, Hiroshi
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2023, 640 : 56 - 63